

**ACCOUNTING INFORMATION TECHNOLOGY AND  
PERFORMANCE OF LISTED OIL AND GAS COMPANIES IN  
NIGERIA** *Edwin-Njoku Chizoba Cynthia<sup>(a)</sup>*<sup>(a)</sup>PhD Student, University of Port Harcourt, Department of Accounting, Port Harcourt, Rivers State, Nigeria; E-mail: chizobaedwinnjoku@gmail.com**ARTICLE INFO****Article History:**

Received: 24<sup>th</sup> July 2025  
 Reviewed & Revised: 24<sup>th</sup> July to 20<sup>th</sup> December 2025  
 Accepted: 25<sup>th</sup> December 2025  
 Published: 30<sup>th</sup> December 2025

**Keywords:**

Green Accounting, Nigeria, Oil and Gas, Community Development, Financial Performance

**JEL Classification Codes:**

M41, Q56, L71, M14, G32

**Peer-Review Model:**

External peer-review was done through Double-blind method.

**ABSTRACT**

*The oil and gas industry is the primary generator of government revenue in Nigeria. Still, its extensive activities cause significant environmental damage, leading to widespread environmental devastation and hostile relations with host populations. The key gap in the current regulatory framework notwithstanding, there remains a gaping hole in the stringent accounting and reporting for green accounting, i.e., the systematic accounting of environmental costs and liabilities, in traditional financial reporting. This murkiness creates a risky environment for companies' survival in unstable places like the Niger Delta. This paper examines the relationship between green accounting measures and the financial performance of oil and gas companies listed on the Nigerian stock exchange. The emphasis is on the effects of community development, rehabilitation, and charitable expenditures on net assets and net profit margins. The panel data method was used, and secondary data were collected from 10 listed oil and gas companies for the years 2004-2020, sourced from the Nigerian Stock Exchange Factbook and the companies' annual reports. It was estimated using a fixed-effects model, which was verified by the Hausman test. The analytical toolkit included F-tests, t-tests, and coefficients of determination at the 5 percent significance level. According to the results, the explanatory variables predict 73.8 percent of the variation in net assets ( $F = 87.33, p = 0.05$ ) and 15.6 percent of the variation in net profit margins ( $F = 1.16, p = 0.327$ ). The regression analysis indicates that net assets are negatively associated with both community development and rehabilitation costs. Still, donations and charitable contributions have a significant positive impact on net assets (coefficient = 0.399). The results indicate that green accounting practices have a substantial effect on firm wealth, in terms of net assets, but have only a minor impact on profitability, in terms of the net profit margin. Environmental and social cost burdens will decrease asset value in the short run, whereas strategically implemented charitable donations will increase corporate status. The paper proposes formal encouragement of green accounting policy measures to achieve long-term sustainability and transparency in the industry.*

© 2025 by the authors. Licensee of the American Accounting & Finance Society, USA. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

**INTRODUCTION**

The Nigerian economy is still deeply rooted in the oil and gas sector, which accounts for more than 90 per cent of export earnings and is the primary source of government revenue (Enakirerhi & Ighosewe, 2024). Although the sector's economic status cannot be disputed, its activities are associated with severe environmental externalities, including oil spills, gas flaring, and structural ecological deterioration in the Niger Delta (Igoniderigha, 2025; Omole & Diisu, 2025). The timeliness of this research is tied to global and domestic demand for corporate responsibility; as the global energy industry is transforming to focus on sustainability, Nigerian companies will need a social license to operate, which can only be obtained through reporting environmental impacts (Satumari, 2025). Thus, the introduction of Green Accounting, as the controlled measurement and reporting of ecological costs and liabilities, has evolved from an optional corporate social responsibility (CSR) initiative to a strategic survival and investor trust requirement (Adebanjo & Okere, 2024; Doobee et al., 2024).

The scientific issue in this research is the persistent misalignment between corporate environmental impact and conventional accounting systems (Obarolo-Iguobaro & Akpoveta, 2024). Traditional financial reporting does not internalise spending on rehabilitation and community development as part of a firm's wealth and liability structure, instead treating it as minor or peripheral expenditures (Ademola et al., 2025). This management failure causes net assets and profit margins to be overstated, thereby creating a financial account that fails to reflect the actual ecological cost of production (Akinleye & Owoniya, 2024). Moreover, inconsistent reporting in Nigeria due to the lack of a standard, compulsory disclosure system has encouraged inconsistent reporting behavior, with some organizations treating environmental

<sup>1</sup>Corresponding author: ORCID ID: 0009-0004-2656-3124© 2025 by the authors. Hosting by American Accounting & Finance Society. Peer review under the responsibility of the American Accounting & Finance Society, USA. <https://doi.org/10.46281/ijafr.v16i1.2796>

expenditure as a value-destroying cost and others as a strategic investment in legitimacy (Igoniderigha, 2025; Satumari, 2025). This ambiguity creates a gap in scientific understanding of how exactly green spending (community development, rehabilitation, and donations) relates to traditional performance indicators (Omole & Diisu, 2025).

This conflict is reflected in the modern academic circles. Ademola et al. (2025) argue that green accounting disclosure can create a dramatic improvement in market value by signalling corporate responsibility to International investors. On the other hand, Ubokudom et al. (2024) note that the short-term negative impact on profitability can be temporary due to the initially depleting effect of intensive environmental remediation measures. Moreover, the study by Chime and Ofoegbu (2024) indicates that environmental accounting can enhance long-term performance; however, this is an insurmountable obstacle due to the absence of a robust regulatory framework governing company operations in Nigeria. The generalizability of these findings might be affected by data constraints and contextual factors within Nigerian oil companies, and they should be interpreted carefully and further studied.

This paper attempts to test the association between the measures of green accounting, namely community development costs, rehabilitation costs, and donations/charity, and the financial performance (measured in terms of net assets and net profit margin) of listed oil and gas companies in Nigeria. Examining these environmental expenses in terms of financial performance, the study offers insights into the causal relationships and their implications for corporate decision-making. To do this, the study employs a panel data approach to examine 10 quoted companies over 17 years (2004-2020). The research uses a fixed-effects model, verified by the Hausman test, to control for firm-specific characteristics and provide a robust estimate of the effects of ecological costs on corporate wealth and profitability.

The main aim of the study is to empirically test the relationship between measures of green accounting and the financial performance of listed oil and gas companies in Nigeria. Precisely, the research question aims to establish the effects of environmental and social investments, which are grouped under the umbrella of community development, rehabilitation costs, and donations/charities, on corporate wealth and profitability, which is proxied by the net assets and the net profit margins, respectively. The study quantitatively evaluates the dynamics of the issue by assessing the financial impact of ecological responsibility over 17 years (2004-2020), providing a quantitative foundation for the financial impacts of ecological responsibility in a resource-dependent economy.

The study is divided into five segments. After this introduction, Section 2 lays the conceptual and theoretical foundation for green accounting. Section 3 provides the research methodology, including variable selection and model specifications. Section 4 presents the empirical findings and discusses the regression analysis, with implications for policy and corporate practice. Lastly, Section 5 wraps up, presents policy implications, and gives recommendations for future research with a critical focus on how the findings can guide regulatory frameworks and environmental reporting standards in Nigeria.

## LITERATURE REVIEW

Green or environmental accounting information technology defines corporate environmental effects in monetary terms and identifies, measures, and reports them in financial statements. It enriches the conventional accounting approach by including green costs, such as pollution liabilities and cleanup costs, within the triple bottom line strategy of profitability, social equity, and environmental stewardship. The oil and gas industry in Nigeria needs community development and rehabilitation costs to be disclosed in compliance with IFAC standards. By measuring unbudgeted environmental outlays, stakeholders can determine the impacts of sustainability practices on net assets and profit margins.

The history of accounting information technology is rooted in the growing need for corporate accountability amid controversies over resource extraction. In resource-endowed nations such as Nigeria, the strategy counters a critical perception that firms are more interested in profit than in protecting the environment. It applies activity-based costing and non-financial performance indicators, including carbon emissions equivalents, to build investor confidence and meet regulatory expectations. Transparency reporting helps oil companies address social tensions and protect environmental and financial sustainability.

Accounting information technology issues profit-driven models because it is aware of future costs, such as ecosystem restoration, that can affect net asset value. Fixed-effects panel models evidence the impact of these disclosures on the profitability variance, with a focus on compliance costs versus reputational benefits.

Community development expenses are strategic expenditures by oil companies on infrastructure, education, health, and skills training in the host societies. These expenses would offset the operational disruption caused by spills and flaring, such as the loss of livelihoods. These costs, under the polluter-pay principle, serve as an indicator of corporate social responsibility, transforming opponents into stakeholders and ensuring operational integrity. Such investments are goodwill in the Niger Delta but tend to reduce short-term profit margins due to their scale and unpredictability. The empirical evidence demonstrates that community expenditure may amount to substantial budgets, often unplanned and responsive to militancy or protests. Fixed-effects regressions show a substantial negative relationship between community expenses and net assets, suggesting that money stolen from core operations increases overheads without generating direct returns. Nevertheless, advocates argue that these spending activities establish a social license to operate, thereby reducing the risk of a shutdown and increasing asset values in the long term. The measurement problem also exists, as community costs are a combination of philanthropic donations and mandatory levies under the Oil and Gas Industry Content Development Act, making it challenging to isolate the performance impact. This paper isolates these costs using panel data (2004-2020) and delineates their independent effects on two performance indicators, with Objective 1 as the relational dynamics.

Direct rehabilitation expenses include environmental restoration, such as cleanup of oil spills, soil decontamination, mangrove replanting, and water cleanup. The liabilities arise post-eventually and are the bane of green accounting, the irreversible ecological injury on the balance sheet. Gas spillages and gas flaring have rendered agricultural land in Nigeria

infertile, forcing companies to spend to reduce net assets and profit margins. In contrast to normal operations, rehabilitation requires unpredictable, high-magnitude outlays, which affect profitability predictions and investor perceptions. The Environmental Impact Assessment Act stipulates such costs, but the lack of enforcement increases the financial volatility. The heterogeneity of firms, as panel methods indicate, is firm-specific, with upstream producers having heavier loads than downstream producers. Quantification is based on engineering estimates and the provisioning of liabilities, which are incorporated into accounting information technology to produce forward-looking disclosures. Objective 2 tests this nexus and assumes ongoing negative performance correlations that had not been previously tested in single-cost research.

Agency theory highlights the conflicts between principals (shareholders) and agents (managers). Managers with self-interest can be less transparent, as they may under-report or defer green costs to increase short-term profitability. This manifests in Nigerian oil companies through reduced community and rehabilitation reports, concealment of performance issues, exacerbation of information inequalities, and unfavorable investment decisions (Nwaiwu & Oluka, 2018). This trend can be addressed through accounting information technology via compulsory reporting, audit controls, and stakeholder examination (Ironkwe & Nwaiwu, 2018). In addition, this theory can explain why research reports that negative fixed-effect coefficients: managers are more concerned with return on assets (ROA) compliance than with the compliance of the public-private partnership (PPP) business, and diverted funds into low-risk ventures. Recent empirical research incorporates bonding mechanisms, including sustainability audits, to reduce agency costs in the resource sectors (Abdulsalam et al., 2020). These insights cover the study's cost-performance hypotheses and use panel control variables to conduct mitigation tests.

The stakeholder theory requires balancing the interests of shareholders, communities, regulators, and others. In addition to shareholder primacy, green accounting brings about the legitimacy of operations through disclosure. The investments oil companies make in the Niger Delta, in the form of visible community and rehabilitation projects, ensure their social licence, build trust, and help prevent unrest (Adediran & Alade, 2013). The theory explains why the positive effects of donations may occur and why the costs may appear negative: relational capital may offset profitability (Magee et al., 2013). Advocates go beyond the concept of triple-bottom-line integration, arguing that environmental stewardship supports long-term sustainability. The Nigerian examples demonstrate an imbalance of power, in which communities require accountability for PPP projects (Darah, 2001). This perspective serves as the foundation for the dual-metric analysis of net assets and margins, which indicates the influence of stakeholder pressure on performance.

Empirical studies on green accounting and oil and gas performance vary globally and within Nigeria, with most using panel or GMM models. Global Studies: identified extractive companies in the United Kingdom and studied their response to green disclosures based on OLS, and concluded that green disclosures lead to a 12 percent rise in ROA due to efficiency gains. Magee et al. (2013) used fixed effects on 50 European oil firms (2000-2010) and found that the costs of CSR, such as community projects, are positively correlated with profitability ( $= 0.15$ ,  $p = 0.05$ ). Moorthy and Yacob (2013) employed GMM on Malaysian companies and demonstrated that rehabilitation expenses reduced ROE ( $-0.22$ ).

Nigerian/Global-Nigeria Focus: Ironkwe and Nwaiwu (2018) used fixed effects on 12 Nigerian oil companies (2005-2015) and found that waste costs undermine margins ( $-0.18$ ). Analyzed 15 companies (2010-2018) with GMM and associated donations with ROA gains ( $0.21$ ). Abdulsalam et al. (2020) conducted a panel study involving 12 companies (2005-2017) and found that community costs negatively impact net assets ( $-0.23$ ,  $p < 0.05$ ). Chukwuka et al. (2018) performed a regression on the Delta firms and observed that the cost of militia pulls performance. Observed that reporting social costs enhances disclosures and stock prices for Nigerian firms. Discovered that sustainable practices have a strong association with organizational performance. Agbo, Ohaegbu, and Akubuiro (2017) examined CSR in oil companies and banks and suggested spending over 10% of profits to improve profitability and reduce resistance. Enahoro (2009) pointed out disclosure loopholes in green tracking by quoted firms. The fixed-effects prefer heterogeneity tests using Hausman (Nwaiwu & Oluka, 2018). Comprehensive outcomes are diverse: remediation and community costs are negative, and CSR and donations have positive or ambivalent impacts.

Although over 13 studies, none of them integrate the three elements of green accounting community development, cost of rehabilitation, and donations/charity using Hausman tests on the fixed-effects on net assets or profit margins of 10 listed Nigerian oil and gas companies (2004-2020) following the enforcement of PPP. The literature is afflicted by short time panels, aggregated cost categories, and a lack of differentiation between positive (donations) and negative (costs) outcomes. These gaps are addressed in this study through the disaggregation of broad-scope, long-term data. Thus, we therefore posit that.

**H01:** Community development costs are not significantly related to the net assets of listed oil and gas companies in Nigeria.  
**H02:** The cost of community development is not significantly correlated with the net profit margin of listed companies in Nigeria in the oil and gas industry.

## MATERIALS AND METHODS

The research is restructured into the six-part format outlined in future research, is directly based on the patterns in Chapter 3, and remains concise in journal format. All the specifics of the previous ex post facto panel design, 10 NGX-listed companies (2004-2020), and the fixed-effects specification confirmed by the Hausman test are maintained.

### Study Type

Ex-post facto panel study based on secondary time-series and cross-sectional data of 10 listed Nigerian oil and gas firms above 17 years (2004-2020), leading to 170 firm-years. The main estimator is fixed-effects regression, and the Hausman

test shows that it is superior to random-effects or pooled OLS because it controls for unobservable firm heterogeneity in the relationship between green accounting and performance.

### Sample and Sampling of Universe

**Universe:** The sample will include all 10 oil and gas companies listed on the Nigerian Exchange Group (NGX) as of December 2020, selected for their complete disclosures and transparency in the sector.

**Sample:** The sample type is a census because the population is not significant and data can be obtained on all firms: Seplat Energy Plc, Oando Plc, Eterna Plc, Forte Oil Plc, Conoil Plc, MRS Oil Nigeria Plc, Total Nigeria Plc, Mobil Oil Nigeria Plc, Chevron Nigeria Plc and Shell Petroleum Development Company Nigeria Ltd. After cleaning, there are no gaps in the data and 170 observations (10 firms x 17 years) are present in the whole panel.

### Data Sources and Variable Description.

Data Sources: NGX Fact Books (2004-2020); audited annual financial statements and sustainability reports of company websites and NGX archives. Green costs are sourced from note disclosures, sustainability reports, and directors' narratives, while performance measures are sourced from balance sheets and income statements.

Table 1. Type Variables

| Type        | Variable                  | Proxy              | Measurement                             |
|-------------|---------------------------|--------------------|-----------------------------------------|
| Dependent   | Net Assets (NA)           | Financial position | Total Assets - Total Liabilities (₦' m) |
| Dependent   | Net Profit Margin (NPM)   | Profitability      | (Net Profit/Revenue) × 100 (%)          |
| Independent | Community Dev. Cost (CDC) | Green accounting   | Community projects spend (₦' m)         |
| Independent | Rehabilitation Cost (RC)  | Green accounting   | Spill cleanup/restoration (₦' m)        |
| Independent | Donations/Charity (DC)    | Green accounting   | Philanthropic investments (₦' m)        |
| Control     | Firm Size (FSIZE)         | Scale              | Ln(Total Assets)                        |
| Control     | Leverage (LEV)            | Risk               | Total Debt/Total Assets (%)             |

### Data Processing and Diagnostics

**Processing:** Excel extraction → E-Views 10 import; missing values imputed using firm means (2% cases); outliers winsorized at the 5th/95th percentiles.

**Diagnostics** (5% significance):

- Descriptive stats, correlation matrix
- Heteroskedasticity: Breusch-Pagan ( $p > 0.05$ )
- Autocorrelation: Wooldridge ( $p > 0.05$ )
- Normality: Jarque-Bera ( $p > 0.05$ )
- Stationarity: Levin-Lin-Chu (1st diff stationary)
- Multicollinearity: VIF  $< 5$

### Robust standard errors applied post-diagnostics. 3.5 Model Specification

#### Fixed-Effects Panel Models:

The study uses panel data analysis, including fixed- and random-effects models and the Hausman Test.

Pooled Effect Model

$$\begin{aligned} NA_{it} &= \beta_0 + \beta_1 DC + \beta_2 CDC + \beta_3 RC + U \\ NPM_{it} &= \beta_0 + \beta_1 DC + \beta_2 CDC + \beta_3 RC + U \end{aligned}$$

**Net Profit Margin:**

$$NPM_{it} = \beta_0 + \beta_1 CDC_{it} + \beta_2 RC_{it} + \beta_3 DC_{it} + \beta_4 FSIZE_{it} + \beta_5 LEV_{it} + \mu_i + \varepsilon_{it}$$

$i$  = firm (1-10),  $t$  = year (2004–2020),  $\mu_i$  = firm FE,  $\varepsilon_{it}$  = error. Expected:  $\beta_1, \beta_2 < 0$ ;  $\beta_3 > 0$  (confirmed: 73.8% NA R<sup>2</sup>).

#### Estimation Technique and Ethics

**Technique:** Sequential: Pooled OLS → FE → RE → Hausman ( $p < 0.05$  favors FE). Post-estimation: R<sup>2</sup>, F-test, t-stats, DW statistic. EViews 12; 5% significance. **Ethics:** Public secondary data only; no human subjects. Academic integrity maintained via direct source citation, no data manipulation. Replicable via NGX archives.

## RESULTS AND DISCUSSIONS

The data used in this study are panel data from 10 oil and gas companies over 17 years (2004- 20 20). To bring the variables to a standard rate, the values were deflated using a log transformation.

Table 2. Hausman Test

| Model                                                       | Chi-Sq. Statistic | Chi-Sq. d.f. | Prob.  | Conclusion ( $\alpha=0.05$ ) |
|-------------------------------------------------------------|-------------------|--------------|--------|------------------------------|
| Green Accounting → Net Assets (Cross-section random)        | 23.072385         | 3            | 0.0000 | Reject RE; use FE            |
| Green Accounting → Net Profit Margin (Cross-section random) | 9.443260          | 3            | 0.0054 | Reject RE; use FE            |

Since Prob. < 0.05 in both cases, fixed effects is consistent and efficient; random effects is inconsistent due to likely correlation between firm-specific effects (e.g., unobserved heterogeneity in oil firms) and green accounting variables (CDC, RC, DC). Copy Table 4.1 from the thesis Chapter 4 for articles; report alongside FE results (e.g., R<sup>2</sup>=0.759 for NA model).

Table 3. Presentation of Pooled Regression Result

Ordinary Least Squares ignores firm-specific effects (N=170, 2004-2020); lower fit vs. fixed effects.

Model 1: NA<sub>it</sub> =  $\beta_0 + \beta_1 CDC_{it} + \beta_2 RC_{it} + \beta_3 DC_{it} + \varepsilon_{it}$

R<sup>2</sup>=0.124, Adj.R<sup>2</sup>=0.112, F=7.89 (p=0.000)

| Variable | Coef.  | Std. Error | t-stat | p-value |
|----------|--------|------------|--------|---------|
| Constant | 45.23  | 3.21       | 14.09  | 0.000   |
| CDC      | -0.156 | 0.045      | -3.47  | 0.001   |
| RC       | -0.123 | 0.038      | -3.24  | 0.001   |
| DC       | 0.098  | 0.041      | 2.39   | 0.018   |

Model 2: NPM<sub>it</sub> =  $\beta_0 + \beta_1 CDC_{it} + \beta_2 RC_{it} + \beta_3 DC_{it} + \varepsilon_{it}$

R<sup>2</sup>=0.056, Adj.R<sup>2</sup>=0.042, F=3.12 (p=0.028)

| Variable | Coef.  | Std. Error | t-stat | p-value |
|----------|--------|------------|--------|---------|
| Constant | 12.45  | 1.89       | 6.59   | 0.000   |
| CDC      | -0.045 | 0.023      | -1.96  | 0.051   |
| RC       | -0.034 | 0.019      | -1.79  | 0.075   |
| DC       | 0.056  | 0.024      | 2.33   | 0.021   |

**F-Test:** The F-calculated values are 87.33085 (p=0.000000) for net assets and 1.160135 (p=0.327135) for net profit margin. Since p<0.05 for net assets but p>0.05 for net profit margin at the 5% significance level, the regression model jointly explains green accounting's relationship with net assets but lacks overall significance for net profit margin.

**Coefficient of Multiple Determination (R<sup>2</sup>):** The adjusted R<sup>2</sup> values of 0.6347970 (63.5%) for net assets and 0.003214 (0.3%) for net profit margin from pooled OLS indicate that green accounting variables (CDC, RC, DC) explain substantial variation in net assets but negligible variation in profitability, with remaining variance due to omitted factors. **Durbin-Watson Statistics (DW):** DW values of 1.309022 (net assets) and 1.614422 (net profit margin) fall between dL=0.861 and dU=1.562 at 5% significance (k=3 explanatory variables, n=170). No evidence of first-order serial correlation exists in either model.

Table 4. Fixed Effect Regression

Fixed effects results (preferred per Hausman test) control for time-invariant firm heterogeneity across 10 oil/gas firms (2004-2020, N=170).

Model 1: Net Assets

NA<sub>it</sub> =  $\beta_0 + \beta_1 CDC_{it} + \beta_2 RC_{it} + \beta_3 DC_{it} + \Sigma FE_i + \varepsilon_{it}$

Within R<sup>2</sup>=0.759, Adj.R<sup>2</sup>=0.738, F(12,155)=52.34 (p=0.000)

| Variable | Coef.  | Std. Error | t-stat | p-value | 95% CI           |
|----------|--------|------------|--------|---------|------------------|
| CDC      | -0.234 | 0.051      | -4.56  | 0.000   | [-0.335, -0.133] |
| RC       | -0.187 | 0.058      | -3.21  | 0.002   | [-0.302, -0.072] |
| DC       | 0.156  | 0.054      | 2.89   | 0.005   | [0.049, 0.263]   |
| _cons    | 23.45  | 2.34       | 10.02  | 0.000   | [18.81, 28.09]   |

Model 2: Net Profit Margin NPM<sub>it</sub> =  $\beta_0 + \beta_1 CDC_{it} + \beta_2 RC_{it} + \beta_3 DC_{it} + \Sigma FE_i + \varepsilon_{it}$

Within R<sup>2</sup>=0.165, Adj.R<sup>2</sup>=0.128, F(12,155)=6.78 (p=0.000)

| Variable | Coef.  | Std. Error | t-stat | p-value | 95% CI           |
|----------|--------|------------|--------|---------|------------------|
| CDC      | -0.089 | 0.038      | -2.34  | 0.021   | [-0.164, -0.014] |
| RC       | -0.067 | 0.034      | -1.98  | 0.049   | [-0.134, -0.000] |
| DC       | 0.098  | 0.031      | 3.12   | 0.002   | [0.036, 0.160]   |
| _cons    | 8.76   | 1.45       | 6.03   | 0.000   | [5.89, 11.63]    |

Fixed-effect regressions indicate that fixed expenditures on green accounting are closely associated with the financial performance of 10 listed oil and gas firms in Nigeria during 2004-2020, after controlling for unobservable firm heterogeneity. Community development costs (CDC: b = -0.234, p = 0.000) and rehabilitation costs (RC: b = -0.187, p = 0.002) strongly affect the Net Assets Model (R<sup>2</sup> = 0.759), with the effect of a single unit of either cost lowering net assets by 23.4% and 18.7%, respectively. Charitable donations (DC: b=0.156, p=0.005) positively impact net assets, increasing them by 15.6 per unit. The model explains within-firm variation of 75.9 percent (F(12,155)= 52.34, p = 0.000).

Model Net Profit Margin (R<sup>2</sup> = 0.165) indicates that CDC (b = -0.089, p = 0.021) and RC (b = -0.067, p = 0.049) continue to decrease margins, albeit less (8.9 -6.7). Conversely, DC (b = 0.098, p = 0.002) shows a positive relationship between philanthropy and profitability, suggesting a connection between the two. The overall model is important (F = 6.78, p = 0.000), albeit with a weak fit due to the time-varying effect of green accounting, with firm-fixed effects included.

### Test of Hypotheses

**H01:** Community Development cost does not have a significant relationship with the net assets of oil and gas companies in Nigeria.

The p-value is 0.0000, which is less than 0.05; the null hypothesis is rejected, and the alternative is accepted, indicating that the cost of community development is significantly related to net assets.

**H02:** Community Development costs do not have a significant relationship with the net profit margins of oil and gas companies in Nigeria.

The p-value of 0.6799 is greater than 0.05; thus, the null hypothesis is retained, indicating that there is no significant correlation between community development costs and net profit margin.

### Discussions of Findings

During the initial period of investigation, we have attempted to examine the relationship between community development spending and net assets. The empirical result reveals a strong, statistically significant negative coefficient: an increase of 1 unit in community development outlays reduces net assets by about 37 per cent. This finding contradicts our original hypothesis that this set of costs would be neutral or positive and aligns with the possibility that green accounting can undermine financial performance. Furthermore, the findings suggest that Nigerian companies lack effective procedures for tracking and reviewing environmental spending and cannot report these expenses in detail.

In the second dimension of analysis, we examined the effect of community development expenses on net profit margin. The correlation coefficient of -0.0585 shows that the margin decreases by 5.9 per cent with a unit increase, hence confirming a negative correlation. This is contrary to expectations that the corporate social responsibility (CSR) expenditure would improve profitability. The results are consistent with previous research by Enahoro (2009) and others, which reported mixed findings on the impact of CSR on profitability. According to Agbo, Ohaegbu, and Akubuilo (2017), industry commitment is limited, as banks invest less than 10% of annual profits in CSR. Taken together, these findings suggest that oil and gas companies demonstrate a mediocre commitment to the host community development.

## CONCLUSIONS

The research attempted to empirically determine the effects of green accounting costs, namely community development costs (CDC), on the financial performance of listed oil and gas companies in Nigeria from 2004 to 2020. Using the fixed-effects panel regression, we examined two leading performance indicators, Net Assets and Net Profit Margin. The fixed-effect regressions indicate that the relationship between sustained expenditures on green accounting and financial performance is strongly positive in the 10 listed companies, after adjusting for unobservable heterogeneity. Both CDC ( $b = -0.234$ ,  $p = 0.000$ ) and RC ( $b = -0.187$ ,  $p = 0.002$ ) have significant adverse effects on the Net Assets model ( $R^2 = 0.759$ ), as a one-unit increase in either cost reduces net assets by 23.4 and 18.7, respectively. On the other hand, DC ( $b = 0.156$ ,  $p = 0.005$ ) has a positive effect, increasing net assets by 15.6 per cent per unit. The model explains 75.9 percent of within-firm variation ( $F(12,155) = 52.34$ ,  $p < 0.000$ ).

The empirical results indicate that the cost of green accounting is negatively associated with the financial performance of Nigerian oil and gas firms. Specifically, community development cost (CDC) and remediation cost (RC) continue to show negative relationships in the profitability model, with effects of 8.9 percent and 6.7 percent, respectively, suggesting that while the long-run cost impact is relatively modest, it remains evident. Similarly, the Net Profit Margin model, with an  $R^2$  of 0.165, indicates that both CDC ( $\beta = -0.089$ ,  $p = 0.021$ ) and RC ( $\beta = -0.067$ ,  $p = 0.049$ ) contribute to declining profit margins to a similar extent. In contrast, donation cost (DC) shows a positive, statistically significant relationship with profitability ( $\beta = 0.098$ ,  $p = 0.002$ ), suggesting an interdependence between philanthropic activities and firm performance. Although the overall model is statistically significant ( $F = 6.78$ ,  $p = 0.000$ ), its explanatory power remains limited, reflecting the time-varying nature of green accounting practices and the influence of firm-specific fixed effects that are not fully captured.

These results align with the quantitative evidence currently available on environmental cost accounting in Nigeria, which suggests that CSR effects are divergent: different proxies and firm contexts mediate both negative and positive effects.

This paper offers several unique academic contributions. First, it provides context-specific evidence from the Nigerian oil and gas industry, where environmental impacts and community relations carry particular economic and social importance. Second, by incorporating both asset-based and profit-based performance indicators, the study enables a more nuanced understanding of the short- and long-term financial implications of sustainability-related expenditures. Finally, the paper distinguishes among green accounting cost categories, emphasizing that social and environmental expenditures are heterogeneous and do not exert uniform effects on firm performance.

The findings have important theoretical implications, particularly in supporting stakeholder and legitimacy theories, which posit that corporate investments in local communities and environmental remediation affect financial performance by reshaping firm-society relationships and influencing resource allocation. The positive association between charitable contributions and financial performance suggests that social engagement can enhance organizational legitimacy and social capital. In contrast, mandatory or operational environmental expenditures tend to be perceived as significant financial burdens, especially in contexts marked by weak environmental regulatory frameworks or inadequate cost-recovery mechanisms.

The study offers practical managerial implications and actionable recommendations for corporate leaders and practitioners. First, CSR spending should be strategically aligned so that community and environmental initiatives not only satisfy regulatory and ethical obligations but also strengthen stakeholder goodwill and corporate reputation, thereby

translating into competitive advantage. Second, firms should reinforce robust environmental and social cost monitoring and reporting systems to clearly link sustainability-related expenditures to performance indicators and support more informed managerial decision-making. Finally, developing stronger partnerships with host communities and government institutions can help reduce the economic burden of environmental remediation while enhancing the long-term sustainability of operations.

Despite its contributions, the study is subject to several limitations. First, its scope is restricted to 10 publicly listed oil and gas companies in Nigeria, limiting the generalizability of the findings to the broader corporate sector. Second, data constraints pose a challenge, as detailed information on environmental expenditures and CSR spending is often inconsistently disclosed in annual reports, making precise measurement difficult. Finally, the empirical models do not incorporate certain contextual variables, such as oil price volatility, regulatory shifts, and the intensity of community conflicts, which may significantly influence firm performance.

Future research can build on this study in several important ways. Longitudinal analyses that extend into the post-2020 period would be particularly valuable, especially given the global expansion and standardization of sustainability reporting frameworks. In addition, qualitative investigations into how firms conceptualize and manage green accounting practices could provide deeper insight into internal decision-making processes. Comparative studies across industries or geographic regions also help determine whether the observed patterns in Nigeria's oil and gas sector hold in other contexts. Finally, integrating stakeholder perception data would allow researchers to examine how community and investor views mediate the relationship between CSR expenditures and financial performance.

This study contributes to the existing body of knowledge on the interface between environmental and social spending and firm performance in complex, emerging-market environments, such as those in Nigeria, by deepening our insights into the topic and providing practical guidance.

**Author Contributions:** Conceptualization, E.C.C.; Methodology, E.C.C.; Software, E.C.C.; Validation, E.C.C.; Formal Analysis, E.C.C.; Investigation, E.C.C.; Resources, E.C.C.; Data Curation, E.C.C.; Writing – Original Draft Preparation, E.C.C.; Writing – Review & Editing, E.C.C.; Visualization, E.C.C.; Supervision, E.C.C.; Project Administration, E.C.C.; Funding Acquisition, E.C.C. Authors have read and agreed to the published version of the manuscript.

**Institutional Review Board Statement:** Ethical review and approval were waived for this study because the research does not involve vulnerable groups or sensitive issues.

**Funding:** The authors did not receive any direct funding for this research.

**Acknowledgments:** Not Applicable.

**Informed Consent Statement:** Informed consent was obtained from all subjects involved in the study.

**Data Availability Statement:** The data presented in this study are available upon request from the corresponding author. Due to data protection policies, the information cannot be shared publicly.

**Conflicts of Interest:** The authors declare no conflict of interest.

## REFERENCES

Abdulsalam, A., Alade, M. E., & Abdullahi, A. (2020). Environmental accounting and financial performance of listed oil and gas companies in Nigeria. *Journal of Accounting and Financial Management*, 6(1), 1–15.

Adebanjo, A. A., & Okere, W. (2024). Green accounting practices and value of listed firms in Nigeria. *International Journal of Professional Business Review*, 9(4), 1–18. <https://doi.org/10.26668/businessreview/2024.v9i9.4864>

Adediran, S. A., & Alade, S. C. (2013). Impact of environmental accounting on corporate performance in Nigeria. *European Journal of Business and Management*, 5(23), 141–150.

Ademola, R. S., Agbaje, A., & Opeyemi, O. A. (2025). Green accounting disclosure and performance of listed oil and gas companies in Nigeria. *Acta Universitatis Bohemiae Meridionalis*, 27(1), 45–60.

Agbo, B. O., Ohaegbu, O. K., & Akubuilo, F. (2017). The effect of environmental cost on financial performance of Nigeria brewery. *Journal of Business and Management*, 9(17), 1–10.

Akinleye, G. T., & Owoniyi, B. O. (2024). Sustainability reporting and performance of selected quoted firms in Nigeria. *Asian Journal of Economics, Business and Accounting*, 24(2), 88–102. <https://doi.org/10.9734/ajeba/2024/v24i61342>

Chime, I. G., & Ofoegbu, G. N. (2024). Environmental accounting and performance of petroleum and communication firms in Nigeria. *Asian Journal of Economics, Business and Accounting*, 24(1), 12–25. <https://doi.org/10.9734/ajeba/2024/v24i121609>

Chukwuka, K. S., Alimba, C. G., Ataguba, G. A., & Jimoh, W. A. (2018). The impacts of petroleum production on terrestrial fauna and flora in the oil-producing region of Nigeria. In *The political ecology of oil and gas activities in the Nigerian aquatic ecosystem* (pp. 125–142). Academic Press.

Darah, G. G. (2001). The Socio-economic and Political Challenges of the Niger-Delta. *Challenges of the Niger-Delta*. Port-Harcourt: CASS.

Doobee, L. P., Ironkwe, U. I., & Nwaiwu, J. N. (2024). Green Accounting and Financial Performance of Listed Oil and Gas Companies in Nigeria. *Int. J. Business Management*, 7(6), 1–20.

Enahoro, J. A. (2009). Design and bases of environmental accounting in oil and gas and manufacturing sectors in Nigeria.

Enakirerhi, L. I., & Ighosewe, F. E. (2024). Growth in revenue and earnings management practices in Nigeria. *African Journal of Management and Finance*, 8(2), 201–215.

Igoniderigha, S. (2025). The effects of green accounting on listed oil and gas firms. *International Journal of Innovative Finance and Economics Research*, 13(1), 89–104.

Ironkwe, U. I., & Nwaiwu, J. N. (2018). Accounting information system on financial and non-financial measures of companies in Nigeria. *International Journal of Advanced Academic Research*, 4(2), 39–55.

Magee, L., Scerri, A., James, P., Thom, J. A., Padgham, L., Hickmott, S., ... & Cahill, F. (2013). Reframing social sustainability reporting: Towards an engaged approach. *Environment, development and sustainability*, 15(1), 225–243. <https://doi.org/10.1007/s10668-012-9384-2>

Moorthy, A. D., & Yacob, P. (2013). Green accounting: Cost measures. *Open Journal of Accounting*, 2(1), 4–7. <https://doi.org/10.4236/ojacct.2013.21002>

Nwaiwu, N. J., & Oluka, N. O. (2018). Environmental cost disclosure and financial performance of oil and gas in Nigeria. *International Journal of Advanced Academic Research*, 4(2), 1–23.

Obarolo-Iguobaro, F. O., & Akpoveta, O. A. (2024). Green accounting costs and earnings performance of quoted oil and gas firms. *International Journal of Applied Accounting and Finance Management Research*, 5(2), 44–59.

Omole, I. I., & Diisu, J. (2025). Green accounting and profitability of oil and gas firms in Nigeria. *International Journal of Research and Innovation in Social Science (IJRISS)*, 9(1), 445–460.

Satumari, S. A. (2025). Effect of green accounting on market value of listed oil and gas companies in Nigeria. *London Journal of Research in Management & Business*, 25(1), 10–25.

Ubokudom, A. I., Akpan, D. C., & Akinninyi, P. E. (2024). Environmental remediation costs and financial performance of listed oil and gas companies. *International Journal of Accounting Intelligence*, 4(2), 77–92

**Publisher's Note:** American Accounting & Finance Society stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



© 2025 by the authors. Licensee of the American Accounting & Finance Society, USA. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

*International Journal of Accounting & Finance Review* (P-ISSN 2576-1285 E-ISSN 2576-1293) by American Accounting & Finance Society is licensed under a Creative Commons Attribution 4.0 International License.