Accounting & Finance Review

IJAFR VOL 13 NO 1 (2022) P-ISSN 2576-1285 E-ISSN 2576-1293

Available online at https://www.cribfb.com Journal homepage: https://www.cribfb.com/journal/index.php/ijafr Published by CRIBFB, USA

TESTING WEAK FORM OF EFFICIENT MARKET HYPOTHESIS ON SOCIALLY RESPONSIBLE INDICES: COMPARATIVE STUDY BETWEEN DEVELOPED AND EMERGING MARKETS

🔟 Sabyasachi Mondal ^(a) 🔟 Ranjit Singh ^{(b)1} 🔟 Vibha Yadav

^(a) Assistant Professor, Department of Commerce, School of Management and Commerce, Brainware University, India; E-mail: sabyasachi.mondal1981@gmail.com

(b) Professor, Department of Management Studies, Indian Institute of Information Technology Allahabad, India; E-mail: ranjitsingh@iiita.ac.in (c) Faculty, Department of Management Studies, Indian Institute of Information Technology Allahabad, India; E-mail: vibha.dixit22@gmail.com

ARTICLE INFO

Article History:

Received: 1st October 2022 Accepted: 30th November 2022 Online Publication: 8th December 2022

Keywords:

Weak Form of Efficient Market, Socially Responsible Indices, Developed And Emerging Markets

JEL Classification Codes:

G32, F65, L66, L25, M41

ABSTRACT

The study attempts to identify the presence of randomness in the socially responsible indices (SRI) of the stock markets of developed and emerging economies. 9 developed and 5 emerging economies were considered for the test of randomness on daily, weekly, monthly, quarterly and semiannual return of socially responsible and their benchmark indices. The Shapiro-Wilk test is used to test the data's normality, whereas the runs test and Augmented Dickey-Fuller test are used to find the randomness of the data. It has been observed that the market could be more efficient and random for all time durations. Most of the non-randomness is seen in daily and weekly returns. However, inefficiency disappears as the time frame increases. The combination of runs and ADF tests show that South Africa, Singapore, and South Korea show randomness for all time durations, whereas the same randomness pattern for Brazil, Australia, Japan, Singapore, and South Korea. Arab, Austria, Germany, Nordic, and USA are not present in daily return and randomness for all other durations for both the test combinations under the first test combination. It is also observed that most socially responsible investment indices resonate with the randomness patterns of benchmark indices. Socially responsible investment destinations and diversifying their portfolios.

© 2022 by the authors. Licensee CRIBFB, USA. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

The price determination process in the securities market is characterized by the fact that they reflect all the information cumulatively at a given time. The implication of the model is that no investor can find any stock undervalued or overvalued through technical or fundamental analysis. Hence, it is futile to predict the trend in a securities market. This concept introduced by Eugene Fama in 1965 is referred to as the 'Efficient market Hypothesis' (EMH). Fama (1970) stated that financial markets are 'informationally efficient. There are three market efficiency forms: weak, semi-strong, and strong. Weak form suggests that prices of securities reflect all the past information. The semi-strong form states that prices reflect all publicly available and past information. The strong form of EMH indicates that prices instantaneously reflect even hidden information along with past and publicly available information.

Among the three forms of EMH, the weak form postulates that the stock market is completely random in that all information is reflected in it already, and the price on the next day cannot be predicted using past information. Researchers (Fama & French, 1988; Singh et al., 2016; Alexeev & Tapon, 2011) have used stock market indices as samples while testing the weak form of efficiency. Researchers have also tested the weak EMH on thematic indices such as the Islamic index and utility index; sectorial indices such as the banking and pharma indexes. In recent times, Socially Responsible Indices (SRIs) are new additions. As it is a new type of index, only some studies are devoted to it.

The world witnessed ethical degradation in the 2008 financial crisis, and SRI has consequently gained more importance. The advent of Corporate Social Responsibility (CSR), carbon credit, and sustainability in the corporate sector has an impetus to forming SRIs. Though the USA and European countries are pioneers in creating SRI assets, developing

https://doi.org/10.46281/ijafr.v13i1.1853

¹Corresponding author: ORCID ID: 0000-0001-9408-9525

^{© 2022} by the authors. Hosting by CRIBFB. Peer review under responsibility of CRIBFB, USA.

To cite this article: Mondal, S., Singh, R., & Yadav, V. (2022). TESTING WEAK FORM OF EFFICIENT MARKET HYPOTHESIS ON SOCIALLY RESPONSIBLE INDICES: COMPARATIVE STUDY BETWEEN DEVELOPED AND EMERGING MARKETS. *International Journal of Accounting & Finance Review*, *13*(1), 20-34. https://doi.org/10.46281/ijafr.v13i1.1853

countries are following suit. High growth trajectory and higher infrastructure building in these developing economies, including Brazil, India, and China, lead to a high pollution level. In this scenario, society is expected to encourage companies that follow strict carbon emission norms and, thus, become socially responsible companies.

The thrust of the Global Reporting Initiative (GRI)² meanwhile, it has given an impetus to the social responsibility causes by making different sustainability stakeholders report their sustainable initiatives. However, developing countries have the least share of reporting among all. Though the reporting is mostly voluntary, mandatory reporting provisions have come up in many developing countries such as India in recent years. As a result, sustainable investment is expected to grow manifold in these countries in the near future, and more fund managers and stock markets are expected to get involved in socially responsible investment.

The year 2009 saw the United Nations sustainable stock exchange (UNSSE) pooling the investors, stock exchanges, and other related stakeholders in one platform for the promotion of sustainable investment and to improve ESG disclosures. As a result, many stock exchanges from developing countries have been partnering with the initiative recently.

Many researchers tried to figure out whether social responsibility is a driving force in earning above-average returns. Amenc et al. (2010) showed that social responsibility is a driving force in deriving above-average returns. Along the same line, it has been observed by Eccles et al. (2011) and Tripathi and Bhandari (2012) that a company with strong environmental and social policy tends to outperform stocks that are bereft at a policy level. A firm's social responsibility leads to looking after a diverse group of stakeholders in relation to the ESG principle without sacrificing profit (AON, 2007). On the other hand, Geczy et al. (2005) postulate that certainty-equivalent returns in SRI mutual funds get curtailed by a sizeable penalty compared to funds without such focus. Though the returns get positive or negative for SRI, some researchers look for significant high or low profits with socially responsible investments. Likewise, Hong and Kacperczyk (2009) pointed out that the "sin" firms related to alcohol, tobacco, and gambling industries earn significantly higher profits than comparable firms from other industries. However, Kempf and Osthoff (2007) and Statman and Glushkov (2009) differed from the earlier postulation and expressed those ethical stocks, too, can garner significantly high profits.

Meanwhile, Renneboog et al. (2008) suggested that investors need to bear the cost of ethics leading to potential downside risk for these funds. Returns based on emission allowances tend to be serially correlated, making them non-random and hence not in sync with a weak form of market efficiency (Daskalakis, 2008). Hence, it is pertinent to ask whether socially responsible indices behave randomly compared to traditional indices.

The progress report of the SSE initiative, 2018, shows that the UN-backed initiative, though it has fuelled more interest in sustainability among countries around the world, only 39 out of the 78 SSE partner exchanges have an ESG index presently. However, only 14 out of 39 countries have their data published on a public platform for more than five years; hence, they are considered for testing the randomness.

Therefore, an attempt has been made to investigate whether the SRI indices and their benchmark indices generate above-average returns and thereby test the weak form of market efficiency of 14 selected countries in this way. It has been shown by Kratz (1999) that portfolio managers, with their adept strategies, outperform benchmarks and exploit market inefficiencies. Clerk et al. (2001) concluded that EMH plays a pivotal role for regulatory authorities, investors, and academicians in analyzing investment decisions.

LITERATURE REVIEW

The randomness of speculative prices has been tested by Bachelier (1964) on Government bond prices in France. The behavior of stock price and independence of price differences of securities have been tested by Kendall (1953) and Moore (1964). A new method named Spectral analysis, which is from the field of sound waves, has been used by Granger and Morgenstern (1963) to test the random walk hypothesis by taking data from NYSE. The most notable work, though, has been offered by Fama (1965), who used Autocorrelation and ran a test to show the randomness of the behavior of share prices.

Meanwhile, applying the different statistical technique on security price behavior have augmented little evidence that successive prices are related. Studies like Fama and Blume (1968) and Alexander (1961) used 'filter' trading rules to trace the profitability among different strategies. Likewise, Jensen and Benington (1970) have demonstrated that buy-and-hold strategies cannot generate above-average returns. This finding supports the random walk model. The application of spectral analysis continued as Rao and Mukherjee (1971) experimented with Indian aluminum stocks from 1955 to 1970 to find the randomness. Likewise, Cooper (1982) worked with daily, weekly, and monthly data for 36 countries using spectral analysis and running tests to figure out that returns from U.K. and U.S. were random while non-randomness was found in other countries. DeBondt and Thaler (1985, 1987) attributed inefficiency to NYSE due to market overreaction to news related to corporate action in the listed companies. Autocorrelation was found in the weekly return of NYSE stocks by Lo and Mackinlay (1988).

The presence of randomness in the Athens stock market by Panas (1990). Frennberg and Hansson (1993) experimented with Swedish stock market data from 1919 to 1990 to find the non-presence of randomness in the data. Urrutia (1995) concluded that developed markets' stocks are more efficient than emerging markets.

With necessary precautions, EMH is expected to play an important role in modern finance (Yen & Lee, 2008). Likewise, Borges (2010) tested EMH under weak, semi-strong, and strong forms worldwide under different economic conditions taking daily and weekly data. The EMH was rejected for Portugal and Greece due to positive autocorrelations and for France and the U.K. due to mean reversion in weekly data. Similarly, Gupta (2011) observed that EMH was rejected for ASEAN stocks for their daily returns.

²GRI is an independent international organization that promotes sustainable reporting among its member countries.

Of late, there have been a few studies regarding sustainable indices. Singh et al. (2016) found non-randomness in daily returns but randomness in monthly returns in sustainable indices of India, the USA, Japan, and Brazil. Adding another dimension to the analysis, Singh and Leepsa (2016) did not find any significant performance difference in return between sustainable and traditional indices. However, Mynhardt, Makarenk, & Plastun (2017) differed from it and found that traditional indices are more efficient than sustainable indices.

Research Gap

A developed country has been the harbinger of growth in sustainability research, as observed from the literature review above. Developing countries, though, need to catch up in this regard. Moreover, it has been noticed that testing the weak form of efficiency has not been the primary motto of most of this research. However, technical and fundamental analysts are at loggerheads on earning above-average returns keeping the flavor of social responsibility intact. Consequently, a research gap has been created on whether investing in SRI indices of the stock markets of developing and developed countries will provide investors with an above-average return.

MATERIALS AND METHODS

Objectives of Study

The objective of the study is given as follows:

 To investigate whether the returns of SRI indices and their benchmark indices of select developed and developing countries chart a random pattern.

Hypotheses of Study

The following hypotheses are formed:

- H₀₁: The daily returns of SRI indices of select developed and developing countries follow a random pattern;
- H₀₂: The weekly returns of SRI indices of select developed and developing countries follow a random pattern;
- **H**₀₃: The monthly returns of SRI indices of select developed and developing countries follow a random pattern;
- **H**₀₄: The quarterly returns of SRI indices of select developed and developing countries follow a random pattern;
- **H**₀₅: The semiannual returns of SRI indices of select developed and developing countries follow a random pattern.

Research Methodology

This is an empirical study. Socially responsible indices from several developed and developing countries across the globe are considered in this regard. Inclusion in a socially responsible index needs fulfilling several criteria. The index can be based on different themes, namely carbon emission, social sustainability, environmental awareness, governmental performance, etc. Based on these themes, indices such as carbon, green, ESG, etc., are formed. Our analysis considers all these indices as countries differ in their social responsibility investment approaches. Like any Scandinavian country, a carbon-efficient country may focus on governmental or social parameters. Likewise, another country may focus on the environment. Hence, capturing all approaches in a single analysis is pertinent to robustness.

The study, therefore, tests the randomness of these indices and their benchmark indices. If the indices are random, they are said to follow the weak form of market efficiency and vice versa. This approach leads to a research framework, as seen in figure 1.

Figure 1. Proposed Research Framework

The study is based on SRI indices of developed and developing economies. According to United Nations, developed or developing countries do not have a definition. However, the high Human Development Index (HDI) and Gross

Domestic Product (GDP) are some of the tools used worldwide to determine developed and developing countries. 78 countries have participated in the sustainable stock exchange (SSE) initiative by United Nations, out of which only 39 have socially responsible indices. Out of these 39 countries, only 14 have publicly available data for 5 years or more. The 14 countries consist of 9 developed and 5 developing countries. The developed countries are Australia, Austria, Germany, Nordic, USA, Canada, Japan, Singapore, and South Korea, and developing countries include Brazil, India, Arab, Egypt, and South Africa. A few developing countries, including China, Mongolia, Bangladesh, and Hong Kong, have SRI indices, but the data availability is only for 2 to 3 years, excluding them from the analysis. The selected indices are provided in table 1.

Type of Data and Its Collection

Secondary data are collected from the stock exchanges related to the aforementioned indices for the study. Daily closing prices of the indices mentioned are extracted from their inception till 31st December 2018.

Country	SRI	Benchmark Index
Australia	D.J. Sustainable Australian	S&P ASX 200
Austria	CECE Sri Eur	CECE Eur
Brazil	ICo2	IBX 50
Canada	DJSI Canada	DJSI North America Composite
Egypt	S&P EGX ESG	EGX 100
Germany	Okodax	Dax
India	BSE Carbonex	BSE 100
Japan	S&P Topic 150 ESG	S&P Topic 150
Nordic	D.J. Sustainability Nordic	S&P Global BMI
Pan Arab	S&P ESG Pan Arab	S&P Pan Arab Composite
Singapore	SGX ESG	STI
South	S&P SA Composite Carbon	S&P SA Composite
Africa		
South Korea	DJSI Korea	S&P Global BMI
USA	S&P 500 Carbon efficient	S&P 500

Table 1: Socially responsible indices and their benchmark indices

Data Analysis

To check the normal distribution, the Shapiro-Wilk test (Shapiro & Wilk, 1965; Nomadiah Mohd Razali, 2011). If the sample size is below 2000, the Shapiro-Wilk test is ideal for assessing the goodness of fit (UNT, 2014). If the data is non-normal, a non-parametric Run test is used to check the randomness of return. However, if the data is normal, Autocorrelation and unit root test is used to determine randomness. The following formula gives the monthly return.

Ri = LN (Pt / Pt-1)(1) where LN= Logarithmic return Ri = The return obtained Pt= End of the day price of SRI indices/benchmark market indices. Pt-1= End of day price of SRI indices/benchmark market indices.

Logarithm returns are better suited for the analysis as they are more likely to be distributed normally (Strong, 1994). Weekly and monthly data are nothing but mean weekly and mean monthly data. Quarterly and semiannual data are calculated by averaging the monthly mean over three months and six months, respectively.

RESULTS AND DISCUSSIONS

The normality of the distribution of social responsibility indices and benchmark indices of 14 countries through the Shapiro-Wilk (S.W.) test is presented in table 2.

Table 2. Test of normality of log-returns of the select indices

	Daily return	ns	W	eekly retu	rns	N	Ionthly Ret	urns	Q	uarterly Re	eturns	Yea	rly Returi	ıs		
	Shapiro-Wil	k	Sh	napiro-Wilk		S	hapiro-Wilk		SI	hapiro-Wilk		Sha	piro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.	Statistic	df	Sig.	Statistic	df	Sig.	Statistic	df	Sig.
Australia	D.J.	0.949	1418	0.000	0.946	525	0.000	0.975	119	0.026	0.968	41	0.295	0.956	20	0.473
	Sustainable Australian															
Australia	S&P ASX	0.948	1418	0.000	0.940	525	0.000	0.969	119	0.008	0.960	41	0.158	0.901	20	0.043
	200															
Austria	CECE Sri	0.921	1418	0.000	0.878	659	0.000	0.920	136	0.000	0.905	47	0.001	0.912	23	0.045
	Eur															
Austria	CECE Eur	0.932	1418	0.000	0.916	659	0.000	0.948	136	0.000	0.926	47	0.005	0.896	23	0.021
Brazil	ICo2	0.982	1418	0.000	0.980	413	0.000	0.993	94	0.923	0.970	33	0.467	0.971	16	0.860
Brazil	IBX 50	0.985	1418	0.000	0.983	413	0.000	0.989	94	0.635	0.960	33	0.266	0.970	16	0.833
Canada	DJSI	0.977	1418	0.000	0.987	359	0.003	0.982	81	0.324	0.939	28	0.105	0.958	14	0.687
	Canada															
Canada	DJSI	0.964	1418	0.000	0.968	359	0.000	0.973	81	0.087	0.959	28	0.335	0.905	14	0.133
	North															

Mondal et al., International Journal of Accounting & Finance Review 13(1) (2022), 20-34

	America															
	Composite															
Egypt	S&P EGX ESG	0.750	1418	0.000	0.878	388	0.000	0.984	89	0.362	0.813	31	0.000	0.915	15	0.160
Egypt	EGX 100	0.941	1418	0.000	0.926	388	0.000	0.984	89	0.365	0.604	31	0.000	0.768	15	0.001
Germany	Okodax	0.914	1418	0.000	0.946	734	0.000	0.976	167	0.005	0.976	56	0.337	0.954	28	0.247
Germany	Dax	0.895	1418	0.000	0.930	734	0.000	0.959	167	0.000	0.939	56	0.007	0.897	28	0.010
India	BSE Carbonex	0.988	1418	0.000	0.994	412	0.112	0.994	93	0.957	0.978	32	0.726	0.970	16	0.842
India	BSE 100	0.988	1418	0.000	0.994	412	0.124	0.994	93	0.959	0.979	32	0.780	0.965	16	0.756
Japan	S&P Topic 150 ESG	0.969	1418	0.000	0.951	492	0.000	0.983	112	0.152	0.980	39	0.715	0.975	19	0.868
Japan	S&P Topic 150	0.973	1418	0.000	0.943	492	0.000	0.979	112	0.073	0.967	39	0.311	0.975	19	0.871
Nordic	D.J. Sustainabil ity Nordic	0.950	1418	0.000	0.913	522	0.000	0.974	119	0.021	0.778	41	0.000	0.687	20	0.000
Nordic	S&P Global BMI	0.900	1418	0.000	0.880	522	0.000	0.974	119	0.020	0.840	41	0.000	0.705	20	0.000
Pan Arab	S&P ESG Pan Arab	0.828	1418	0.000	0.877	522	0.000	0.970	119	0.009	0.859	41	0.000	0.618	20	0.000
Pan Arab	S&P Pan Arab Composite	0.824	1418	0.000	0.856	522	0.000	0.982	119	0.116	0.902	41	0.002	0.680	20	0.000
Singapore	SGX ESG	0.978	1418	0.000	0.980	304	0.000	0.970	69	0.099	0.895	25	0.014	0.925	12	0.327
Singapore	STI	0.975	1418	0.000	0.966	304	0.000	0.969	69	0.089	0.820	25	0.001	0.899	12	0.156
South Africa	S&P SA Composite Carbon	0.973	1418	0.000	0.987	296	0.011	0.980	67	0.343	0.972	24	0.707	0.945	12	0.565
South Africa	S&P SA Composite	0.984	1418	0.000	0.996	296	0.568	0.989	67	0.818	0.988	24	0.991	0.956	12	0.718
South Korea	DJSI Korea	0.913	1418	0.000	0.920	524	0.000	0.947	119	0.000	0.943	41	0.041	0.941	20	0.248
South Korea	S&P Global BMI	0.901	1418	0.000	0.883	524	0.000	0.928	119	0.000	0.894	41	0.001	0.802	20	0.001
USA	S&P 500 Carbon efficient	0.932	1418	0.000	0.962	505	0.000	0.977	115	0.049	0.939	40	0.032	0.944	20	0.287
USA	S&P 500	0.935	1418	0.000	0.961	505	0.000	0.976	115	0.036	0.933	40	0.020	0.944	20	0.287

Less than 0.05 P value (5% level of significance) signifies non-normality and more than 0.05 P value signifies normality. A run test is conducted to test the randomness of returns presented in tables 3, 4, 5, 6, and 7.

Table 3. Runs test on daily returns of select indices

Country	Indices	Test	Cases <	Cases	Total	Number	Z	Asymp. Sig. (2-tailed)
		Value	Test	>= Test	Cases	of Runs		
			Value	Value				0.151
Australia	D.J. Sustainable Australian	0.000	1275	1275	2550	1312	1.426	0.154
Australia	S&P ASX 200	0.000	1275	1275	2550	1302	1.030	0.303
Austria	CECE Sri Eur	0.000	1592	1593	3185	1517	-2.711	0.007
Austria	CECE Eur	0.000	1592	1593	3185	1584	-0.337	0.736
Brazil	ICo2	0.000	994	994	1988	976	-0.852	0.394
Brazil	IBX 50	0.000	994	994	1988	996	0.045	0.964
Canada	DJSI Canada	0.000	876	876	1752	895	0.860	0.390
Canada	DJSI North America	0.000	876	876	1752	926	2.342	0.019
	Composite							
Egypt	S&P EGX ESG	0.001	906	907	1813	816	-4.299	0.000
Egypt	EGX 100	0.001	906	907	1813	796	-5.239	0.000
Germany	Okodax	0.000	1789	1790	3579	1681	-3.661	0.000
Germany	Dax	0.001	1789	1790	3579	1861	2.357	0.018
India	BSE Carbonex	0.001	981	982	1963	909	-3.319	0.001
India	BSE 100	0.001	981	982	1963	901	-3.680	0.000
Japan	S&P Topic 150 ESG	0.001	1158	1158	2316	1157	-0.083	0.934
Japan	S&P Topic 150	0.001	1158	1158	2316	1129	-1.247	0.212
Nordic	D.J. Sustainability Nordic	0.000	1288	1289	2577	1363	2.896	0.004
Nordic	S&P Global BMI	0.001	1288	1289	2577	1185	-4.118	0.000
Pan Arab	S&P ESG Pan Arab	0.000	1660	1661	3321	1475	-6.474	0.000
Pan Arab	S&P Pan Arab Composite	0.000	1660	1661	3321	1513	-5.155	0.000
Singapore	SGX ESG	0.000	736	745	1481	737	-0.233	0.816
Singapore	STI	0.000	729	752	1481	725	-0.849	0.396
South Africa	S&P SA Composite Carbon	0.000	706	712	1418	706	-0.212	0.832
South Africa	S&P SA Composite	0.001	709	709	1418	685	-1.328	0.184
South Korea	DJSI Korea	0.000	1277	1277	2554	1303	0.990	0.322
South Korea	S&P Global BMI	0.001	1277	1277	2554	1179	-3.919	0.000
USA	S&P 500 Carbon efficient	0.001	1220	1220	2440	1293	2.916	0.004
USA	S&P 500	0.001	1220	1220	2440	1279	2.349	0.019

Country	Indices	Test	Cases < Test	Cases >=	Total	Number	Za	Asymp. Sig.
		Value	Value	Test Value	Cases	of Runs		(2-tailed)a
Australia	D.J. Sustainable Australian	0.001	262	263	525	260	-0.306	0.760
Australia	S&P ASX 200	0.001	262	263	525	272	0.743	0.458
Austria	CECE Sri Eur	0.000	329	330	659	319	-0.897	0.370
Austria	CECE Eur	0.000	329	330	659	327	-0.273	0.785
Brazil	ICo2	0.001	206	207	413	223	1.527	0.127
Brazil	IBX 50	0.001	206	207	413	203	-0.443	0.658
Canada	DJSI Canada	0.000	179	180	359	203	2.378	0.017
Canada	DJSI North America	0.001	179	180	359	191	1.110	0.267
	Composite							
Egypt	S&P EGX ESG	0.001	194	194	388	162	-3.355	0.001
Egypt	EGX 100	0.001	194	194	388	165	-3.050	0.002
Germany	Okodax	0.000	367	367	734	373	0.369	0.712
Germany	Dax	0.001	367	367	734	406	2.807	0.005
India	BSE Carbonex	0.001	206	206	412	194	-1.282	0.200
India	BSE 100	0.001	206	206	412	194	-1.282	0.200
Japan	S&P Topic 150 ESG	0.001	246	246	492	233	-1.264	0.206
Japan	S&P Topic 150	0.001	246	246	492	227	-1.805	0.071
Nordic	D.J. Sustainability Nordic	0.001	261	261	522	260	-0.175	0.861
Nordic	S&P Global BMI	0.000	261	261	522	264	0.175	0.861
Pan Arab	S&P ESG Pan Arab	0.000	261	261	522	241	-1.840	0.066
Pan Arab	S&P Pan Arab Composite	0.002	261	261	522	237	-2.191	0.028
Singapore	SGX ESG	0.000	152	152	304	157	0.460	0.646
Singapore	STI	0.000	152	152	304	151	-0.230	0.818
South Africa	S&P SA Composite Carbon	0.000	148	148	296	157	0.932	0.352
South Africa	S&P SA Composite	0.000	148	148	296	157	0.932	0.352
South Korea	DJSI Korea	0.000	262	262	524	282	1.662	0.097
South Korea	S&P Global BMI	0.001	262	262	524	268	0.437	0.662
USA	S&P 500 Carbon efficient	0.001	252	253	505	261	0.668	0.504
USA	S&P 500	0.001	252	253	505	263	0.846	0.397

Table 4. Runs test on weekly returns of select indices

Table 5. Runs test on monthly returns of select indices

Country	Indices	Test Value	Cases < Test Value	Cases >= Test Value	Total Cases	Number of Runs	Za	Asymp. Sig. (2- tailed)a
Australia	D.J. Sustainable	0.000	59	60	119	62	0.277	0.782
11uoti unu	Australian	01000	0,2	00	,	02	0.277	0.7.02
Australia	S&P ASX 200	0.006	59	60	119	58	-0.460	0.646
Austria	CECE Sri Eur	0.000	68	68	136	73	0.689	0.491
Austria	CECE Eur	0.000	68	68	136	71	0.344	0.731
Brazil	ICo2	0.000	47	47	94	47	-0.207	0.836
Brazil	IBX 50	0.000	47	47	94	49	0.207	0.836
Canada	DJSI Canada	0.000	40	41	81	39	-0.558	0.577
Canada	DJSI North America Composite	0.001	40	41	81	38	-0.781	0.435
Egypt	S&P EGX ESG	0.000	44	45	89	46	0.108	0.914
Egypt	EGX 100	0.000	44	45	89	39	-1.385	0.166
Germany	Okodax	0.000	83	84	167	74	-1.630	0.103
Germany	Dax	0.001	83	84	167	88	0.544	0.587
India	BSE Carbonex	0.000	46	47	93	53	1.148	0.251
India	BSE 100	0.000	46	47	93	53	1.148	0.251
Japan	S&P Topic 150 ESG	0.000	56	56	112	56	-0.190	0.849
Japan	S&P Topic 150	0.000	56	56	112	52	-0.949	0.343
Nordic	D.J. Sustainability	0.000	59	60	119	57	-0.644	0.520
	Nordic							
Nordic	S&P Global BMI	0.000	59	60	119	61	0.093	0.926
Pan Arab	S&P ESG Pan Arab	0.000	59	60	119	51	-1.749	0.080
Pan Arab	S&P Pan Arab	0.000	59	60	119	53	-1.380	0.168
	Composite							
Singapore	SGX ESG	0.000	34	35	69	38	0.608	0.543
Singapore	STI	0.000	34	35	69	44	2.064	0.039
South Africa	S&P SA Composite	0.000	33	34	67	33	-0.368	0.713
South Africa	S&P SA Composite	0.000	33	34	67	34	-0.121	0.903
South Korea	DJSI Korea	0.000	59	60	119	53	-1.380	0.168
South Korea	S&P Global BMI	0.000	59	60	119	60	-0.091	0.927
USA	S&P 500 Carbon	0.001	57	58	115	64	1.031	0.302
	efficient							
USA	S&P 500	0.001	57	58	115	64	1.031	0.302

<u>Carrentaria</u>	Terditara	Teet	Casar	Canada	Tatal	Nih f	7-	A Star (2
Country	Indices	Voluo	Cases <	Cases >= Test Velue	Cosos	Number of	La	Asymp. Sig. (2-
		(a)	Value	Test value	Cases	Kulls		taneu)a
Australia	D.I. Sustainable Australian	0.000	20	21	41	2.2	0.004	0 997
Australia	S&P ASX 200	0.000	20	21	41	20	-0.313	0.755
Austria	CECE Sri Eur	0.000	23	24	47	20	-1.177	0.239
Austria	CECE Eur	0.000	23	24	47	20	-1.177	0.239
Brazil	ICo2	0.000	16	17	33	23	1.776	0.076
Brazil	IBX 50	0.000	16	17	33	19	0.359	0.719
Canada	DJSI Canada	0.000	14	14	28	14	-0.193	0.847
Canada	DJSI North America	0.001	14	14	28	19	1.348	0.178
	Composite							
Egypt	S&P EGX ESG	0.000	15	16	31	14	-0.726	0.468
Egypt	EGX 100	0.000	15	16	31	14	-0.726	0.468
Germany	Okodax	-0.001	28	28	56	26	-0.809	0.418
Germany	Dax	0.000	28	28	56	27	-0.539	0.590
India	BSE Carbonex	0.000	16	16	32	12	-1.617	0.106
India	BSE 100	0.000	16	16	32	12	-1.617	0.106
Japan	S&P Topic 150 ESG	0.001	19	20	39	20	0.000	1.000
Japan	S&P Topic 150	0.001	19	20	39	20	0.000	1.000
Nordic	D.J. Sustainability Nordic	0.001	20	21	41	22	0.004	0.997
Nordic	S&P Global BMI	0.000	20	21	41	22	0.004	0.997
Pan Arab	S&P ESG Pan Arab	0.000	20	21	41	25	0.953	0.340
Pan Arab	S&P Pan Arab Composite	0.000	20	21	41	22	0.004	0.997
Singapore	SGX ESG	0.000	12	13	25	16	0.827	0.408
Singapore	STI	0.000	12	13	25	14	0.008	0.993
South Africa	S&P SA Composite Carbon	0.000	12	12	24	12	-0.209	0.835
South Africa	S&P SA Composite	0.000	12	12	24	13	0.000	1.000
South Korea	DJSI Korea	0.000	20	21	41	19	-0.629	0.529
South Korea	S&P Global BMI	0.001	20	21	41	22	0.004	0.997
USA	S&P 500 Carbon efficient	0.001	20	20	40	23	0.481	0.631
USA	S&P 500	0.001	20	20	40	25	1.121	0.262

Table 6. Runs test on qua	rterly returns of select indice	es
---------------------------	---------------------------------	----

Table 7. Runs test on semiannual returns of select indices

Country	Indices	Test Value (a)	Cases < Test Value	Cases >= Test	Total Cases	Number of Runs	Za	Asymp. Sig. (2- tailed)a
				Value				
Australia	D.J. Sustainable Australian	0.000	10	10	20	10	-0.230	0.818
Australia	S&P ASX 200	0.000	10	10	20	12	0.230	0.818
Austria	CECE Sri Eur	0.000	11	12	23	13	0.009	0.993
Austria	CECE Eur	0.000	11	12	23	13	0.009	0.993
Brazil	ICo2	0.000	8	8	16	10	0.259	0.796
Brazil	IBX 50	0.000	8	8	16	10	0.259	0.796
Canada	DJSI Canada	0.000	7	7	14	7	-0.278	0.781
Canada	DJSI North America	0.001	7	7	14	11	1.391	0.164
	Composite							
Egypt	S&P EGX ESG	0.001	7	8	15	7	-0.521	0.603
Egypt	EGX 100	0.001	7	8	15	8	0.000	1.000
Germany	Okodax	0.000	14	14	28	13	-0.578	0.563
Germany	Dax	0.000	14	14	28	14	-0.193	0.847
India	BSE Carbonex	0.000	8	8	16	8	-0.259	0.796
India	BSE 100	0.000	8	8	16	8	-0.259	0.796
Japan	S&P Topic 150 ESG	0.001	9	10	19	12	0.486	0.627
Japan	S&P Topic 150	0.001	9	10	19	12	0.486	0.627
Nordic	D.J. Sustainability Nordic	0.000	10	10	20	13	0.689	0.491
Nordic	S&P Global BMI	0.000	10	10	20	9	-0.689	0.491
Pan Arab	S&P ESG Pan Arab	0.000	10	10	20	12	0.230	0.818
Pan Arab	S&P Pan Arab Composite	0.000	10	10	20	10	-0.230	0.818
Singapore	SGX ESG	0.000	6	6	12	8	0.303	0.762
Singapore	STI	0.000	6	6	12	6	-0.303	0.762
South Africa	S&P SA Composite Carbon	0.000	6	6	12	6	-0.303	0.762
South Africa	S&P SA Composite	0.000	6	6	12	7	0.000	1.000
South Korea	DJSI Korea	0.000	10	10	20	13	0.689	0.491
South Korea	S&P Global BMI	0.000	10	10	20	9	-0.689	0.491
USA	S&P 500 Carbon efficient	0.001	10	10	20	14	1.149	0.251
USA	S&P 500	0.001	10	10	20	14	1.149	0.251

ADF test is conducted to test the randomness of returns on the same data, and the result is presented in tables 8, 9, 10, 11, and 12.

Table 8. ADF test on daily returns of select indices

AustraliaInstantdata: D.J. Sustainable Australiandata: CECE Sri EurDickey-Fuller = -11.499, Lag order = 11, p-value = 0.01data: CECE Sri Euralternative hypothesis: stationarydata: CECE EurDickey-Fuller = -10.693, Lag order = 11, p-value = 0.01dita: CECE EurDickey-Fuller = -10.694, Lag order = 11, p-value = 0.01dita: CECE EurBrazilCanadadata: ICo2data: DJSI CanadaDickey-Fuller = -11.043, Lag order = 11, p-value = 0.01dita: DJSI Canadadata: IBX 50data: IDSI North America CompositeDickey-Fuller = -11.132, Lag order = 11, p-value = 0.01data: Ockey-Fuller = -11.416, Lag order = 11, p-value = 0.01alternative hypothesis: stationarydata: Okdaxdata: S&P EGX ESGdata: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: Data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: Data: OkdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: Data: DataDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: DataDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01data: DataDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 <t< th=""><th>Australia</th><th>Austria</th></t<>	Australia	Austria
data: Diskey-Fuller = -11.499, Lag order = 11, p-value = 0.01Dickey-Fuller = -9.9073, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: S&P ASX 200data: CECE EurDickey-Fuller = -11.693, Lag order = 11, p-value = 0.01Dickey-Fuller = -10.694, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationaryBrazilCanadadata: ICo2data: DISI CanadaDickey-Fuller = -11.043, Lag order = 11, p-value = 0.01Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: IBX 50data: DISI North America CompositeDickey-Fuller = -11.132, Lag order = 11, p-value = 0.01Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: OkcdaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: EGX 100Dickey-Fuller = -11.024Dickey Fuller = -11.024Lag order = 11, p-value = 0.01Dickey Fuller = -11.024Lag order = 11, p-value = 0.01	data: D I Sustainable Australian	data: CECE Sri Eur
Dickey FullerFunder of filealternative hypothesis: stationary data: S&P ASX 200alternative hypothesis: stationary data: CECE EurDickey-Fuller = -11.693, Lag order = 11, p-value = 0.01 alternative hypothesis: stationaryDickey-Fuller = -10.694, Lag order = 11, p-value = 0.01 alternative hypothesis: stationaryBrazil data: ICo2Canada data: ISX 50Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: IBX 50Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: DISI North America CompositeDickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: S&P EGX ESGDickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: OkodaxDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: EGX 100Dickey Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.425, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax	Dickey-Fuller = -11499 . Lag order = 11 , p-value = 0.01	Dickey-Fuller = -9.9073 . Lag order = 11, p-value = 0.01
data:S&P ASX 200data:CECE EurDickey-Fuller = -11.693, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:CECE EurBrazilCanadadata:ICo2data:Dickey-Fuller = -10.694, Lag order = 11, p-value = 0.01 alternative hypothesis: stationaryBrazilCanadadata:ICo2data:Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:IBX 50Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:S&P EGXDickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationaryegyptGermany data:Germany data:data:ESGDickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt data:Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationarydata:Egypt Dickey F	alternative hypothesis: stationary	alternative hypothesis: stationary
attenditionCanadaDickey-Fuller = -11.693, Lag order = 11, p-value = 0.01Dickey-Fuller = -10.694, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationaryBrazilCanadadata: ICo2data: DISI CanadaDickey-Fuller = -11.043, Lag order = 11, p-value = 0.01Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: IBX 50Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: S&P EGX ESGGermanyDickey-Fuller = -10.907, Lag order = 11, p-value = 0.01Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01alternative hypothesis: stationarydata: OkodaxDickey-Fuller = -0.07, Lag order = 11, p-value = 0.01Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01alternative hypothesis: stationarydata: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01alternative hypothesis: stationarydata: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01alternative hypothesis: stationaryDickey-Fuller = -10.024, Lag order = 11, p-value = 0.01alternative hypothesis: stationarydata: DaxDickey Fuller = -9.7703, Lag order = 11, p-value = 0.01Dickey Fuller = -11.024, Lag order = 11, p-value = 0.01	data: S&P ASX 200	data: CECE Eur
Brazil alternative hypothesis: stationary Brazil Canada data: ICo2 data: DISI Canada Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: IBX 50 data: DJSI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: S&P EGX ESG Germany Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -0.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -0.97703 Lag order = 11, p-value = 0.01 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01	Dickey-Fuller = -11.693 Lag order = 11 p-value = 0.01	Dickey-Fuller = -10.694 Lag order = 11 n-value = 0.01
Brazil Canada data: ICo2 data: DISI Canada Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: IBX 50 data: DJSI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: S&P EGX ESG Germany Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: EGX I00 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01	alternative hypothesis: stationary	alternative hypothesis: stationary
data: ICo2 data: DJSI Canada Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 data: DJSI Canada data: ICo2 Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: DJSI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Egypt Germany data: EGX ESG data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -9.7703 Lag order = 11, p-value = 0.01 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01	Brazil	Canada
data: 1002 Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.043, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.423, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: DSI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -12.007, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dax data: EGX I00 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01 Dickey Fuller = -11.024 Lag order = 11, p-value = 0.01	data: ICo2	data: DISI Canada
Dickey Fuller = 11.9907, Lag order = 11, p-value = 0.01 Dickey-Fuller = 11.132, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: DISI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: DISI North America Composite Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01	Dickey-Fuller $= -11.043$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -12.423$ Lag order $= 11$ p-value $= 0.01$
ata: IBX 50 data: JJSI North America Composite Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary Germany data: S&P EGX ESG data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Dax Dickey-Fuller = -9,7703 Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.024 Lag order = 11, p-value = 0.01	alternative hypothesis: stationary	alternative hypothesis: stationary
atternative hypothesis: stationary Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.132, Lag order = 11, p-value = 0.01 Dickey-Fuller = -11.416, Lag order = 11, p-value = 0.01 atternative hypothesis: stationary Germany data: S&P EGX ESG data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 atternative hypothesis: stationary data: Okodax Dickey-Fuller = -0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01	data: IBX 50	data: DISI North America Composite
alternative hypothesis: stationary alternative hypothesis: stationary Egypt Germany data: S&P EGX ESG data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary data: Okodax Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 Dickey Fuller = -9.7703 Lag order = 11, p-value = 0.01	Dickey-Fuller = -11132 Lag order = 11 n-value = 0.01	Dickey-Fuller = -11416 Lag order = 11 p-value = 0.01
Egypt Germany data: S&P EGX ESG data: Okodax Dickey-Fuller = -10.907, Lag order = 11, p-value = 0.01 Dickey-Fuller = -12.145, Lag order = 11, p-value = 0.01 alternative hypothesis: stationary alternative hypothesis: stationary data: EGX 100 Dickey Fuller = -11, p-value = 0.01 Dickey Fuller = -9,7703 Lag order = 11, p-value = 0.01	alternative hypothesis: stationary	alternative hypothesis: stationary
LeppeGermanydata: S&P EGX ESGdata: OkodaxDickey-Fuller = -10.907 , Lag order = 11, p-value = 0.01Dickey-Fuller = -12.145 , Lag order = 11, p-value = 0.01alternative hypothesis: stationaryalternative hypothesis: stationarydata: EGX 100Dickey Fuller = -12.024 Lag order = $11 \text{ p value} = 0.01$	Faynt	Germany
data: Der LorDickey-Fuller = -12.145 , Lag order = 11 , p-value = 0.01 Dickey-Fuller = -12.145 , Lag order = 11 , p-value = 0.01 alternative hypothesis: stationary data: EGX 100Dickey Fuller = -9.7703 Lag order = 11 , p-value = 0.01	data: S&P FGX FSG	data: Okodax
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Dickey-Fuller = -10.907 Lag order = 11 p-value = 0.01	Dickey-Fuller $= -12.145$ Lag order $= 11$ p-value $= 0.01$
data: EGX 100 Dickey Euller = 9.7703 Leg order = 11 p yelue = 0.01 Dickey Euller = 11.024 Leg order = 11.024	alternative hypothesis: stationary	alternative hypothesis: stationary
a_{data} , EoN 100 a_{data} , EoN 10	data: EGX 100	data: Day
100 MeVeryProperty and	Dickey-Fuller $= -9.7703$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -11.024$ Lag order $= 11$ p-value $= 0.01$
alternative hynothesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
inclinative hypothesis, suitoning inclinative hypothesis, suitoning inclinative hypothesis, suitoning inclinative hypothesis, suitoning inclination in the suitoning in the suitoning inclination in the suitoning inclination in the suitoning in the	India	Japan
data: BSE Carbonex data: S&P Tonic 150 FSG	data: BSE Carbonex	data: S&P Topic 150 FSG
$a_{\text{max}} = b_{\text{max}} = b_{$	Dickey-Fuller $= -11.305$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller = -11.407 Lag order = 11 p-value = 0.01
alternative hundhesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Topic 150	data: RSE 100	data: S&P Topic 150
$a_{\text{max}} = b_{\text{max}} = b_{$	Dickey-Fuller $= -11.298$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -11513$ Lag order $= 11$ p-value $= 0.01$
alternative hynothesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
Internative hypothesis, suitonary Internative hypothesis, suitonary Nordice Pan Arab	Nordic	Pan Arab
data: S&P ESG Pan Arab	data: D I Sustainability Nordic	data: S&P FSG Pan Arab
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dickey-Fuller $= -11.225$ L ag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -10.624$ Lag order $= 11$ p-value $= 0.01$
D(xxy) - In(x - 1), y - Value - 1), y - Value - 0.01 $D(xxy) - In(x - 1), y - Value - 0.01$ $D(xxy) - In(x - 1), y - Value - 0.01$ $D(xxy) - In(x - 1), y - Value - 0.01$	alternative hypothesis: stationary	alternative hypothesis: stationary
data: Sky Global BMI data: Sky Pan Arab Composite	data: S&P Global BMI	data: S&P Pan Arab Composite
$a_{\text{max}} = b_{\text{max}} = b_{$	Dickey-Fuller = -10.868 Lag order = 11 p-value = 0.01	Dickey-Fuller $= -10.118$ Lag order $= 11$ p-value $= 0.01$
alternative hynothesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
atomatve njpotresis, sutonary atomatve njpotresis, sutonary Singapore	Singapore	South Africa
data: SGX ESG data: SGX PSA Composite Carbon	data: SGX FSG	data: S&P SA Composite Carbon
$a_{\text{max}} = b_{\text{max}} = b_{$	Dickey-Fuller $= -10.191$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -12.602$ Lag order $= 11$ p-value $= 0.01$
alternative hynothesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
data: SET data: SET	data: STI	data: S&P SA Composite
a_{max} ber being the composite of th	Dickey-Fuller $= -10.537$ Lag order $= 11$ p-value $= 0.01$	Dickey-Fuller $= -12.113$ Lag order $= 11$ p-value $= 0.01$
alternative hypothesis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
South Korea	South Korea	USA
data: NEU Korea data: S&P 500 Carbon efficient	data: DISI Korea	data: S&P 500 Carbon efficient
$\begin{array}{c} data: 561 500 Carbon $	Dickey-Fuller = -11548 Lag order = 11 p-value = 0.01	Dickey-Fuller = -11537 Lag order -11 n-value -0.01
alternative hundhasis stationary	alternative hypothesis: stationary	alternative hypothesis: stationary
data S&P Global BMI data S&P 500	data: S&P Global RMI	data: S&P 500
$ \begin{array}{c} \text{data: 5ct 500} \\ \text{bickey-Fuller} = -10.79 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ \text{bickey-Fuller} = -11.466 \ \text{Lag order} = 11 \\ \text{p-value} = 0.01 \\ p-valu$	Dickey-Fuller $= -10.79$ Lag order $= 11$ n-value $= 0.01$	Dickey-Fuller $= -11.466$ Lag order $= 11$ n-value $= 0.01$
alternative hypothesis: stationary	alternative hypothesis: stationary	alternative hypothesis: stationary

Table 9. ADF test on weekly returns of select indices

Australia	Austria
data: D.J. Sustainable Australian	data: CECE Sri Eur
Dickey-Fuller = -7.1161 , Lag order = 8, p-value = 0.01	Dickey-Fuller = -7.1372 , Lag order = 8, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P ASX 200	data: CECE Eur
Dickey-Fuller = -7.0086 , Lag order = 8, p-value = 0.01	Dickey-Fuller = -8.3757 , Lag order = 8 , p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Brazil	Canada
data: ICo2	data: DJSI Canada
Dickey-Fuller = -7.8698 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.942 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: IBX 50	data: DJSI North America Composite
Dickey-Fuller = -7.5325 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -7.1496 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Egypt	Germany
data: S&P EGX ESG	data: Okodax
Dickey-Fuller = -6.1507 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.7097 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: EGX 100	data: Dax
Dickey-Fuller = -6.4987 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.5778 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
India	Japan
data: BSE Carbonex	data: S&P Topic 150 ESG
Dickey-Fuller = -8.0551 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -5.8233 , Lag order = 7, p-value = 0.01

alternative hypothesis: stationary	alternative hypothesis: stationary
data: BSE 100	data: S&P Topic 150
Dickey-Fuller = -8.0384 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -5.8142 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Nordic	Pan Arab
data: D.J. Sustainability Nordic	data: S&P ESG Pan Arab
Dickey-Fuller = -7.9798 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -7.1079 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P Pan Arab Composite
Dickey-Fuller = -8.0816 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.7466 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Singapore	South Africa
data: SGX ESG	data: S&P SA Composite Carbon
Dickey-Fuller = -7.2163 , Lag order = 6, p-value = 0.01	Dickey-Fuller = -6.7172 , Lag order = 6, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: STI	data: S&P SA Composite
Dickey-Fuller = -7.2683 , Lag order = 6, p-value = 0.01	Dickey-Fuller = -8.0077 , Lag order = 6, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
South Korea	USA
data: DJSI Korea	data: S&P 500 Carbon efficient
Dickey-Fuller = -6.752 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.6593 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P 500
Dickey-Fuller = -5.8478 , Lag order = 7, p-value = 0.01	Dickey-Fuller = -6.6738 , Lag order = 7, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary

Table 10. ADF test on monthly returns of select indices

Australia	Austria
data: D.I. Sustainable Australian	data: CECE Sri Eur
Dickey-Fuller = -3.733 . Lag order = 4. p-value = 0.0285	Dickey-Fuller = -3.769 . Lag order = 4. p-value = 0.0254
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P ASX 200	data: CECE Eur
Dickey-Fuller = -3.9036 . Lag order = 4. p-value = 0.01924	Dickey-Fuller = -3.3552 , Lag order = 4. p-value = 0.07027
alternative hypothesis: stationary	alternative hypothesis: stationary
Brazil	Canada
data: ICo2	data: DJSI Canada
Dickey-Fuller = -4.1269 , Lag order = 4, p-value = 0.01	Dickey-Fuller = -3.0777 . Lag order = 4. p-value = 0.137
alternative hypothesis: stationary	alternative hypothesis: stationary
data: IBX 50	data: DJSI North America Composite
Dickey-Fuller = -4.6178 , Lag order = 4, p-value = 0.01	Dickey-Fuller = -3.9796 , Lag order = 4, p-value = 0.015
alternative hypothesis: stationary	alternative hypothesis: stationary
Egypt	Germany
data: S&P EGX ESG	data: Okodax
Dickey-Fuller = -3.0439 , Lag order = 4, p-value = 0.150	Dickey-Fuller = -4.2686 , Lag order = 4, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: EGX 100	data: Dax
Dickey-Fuller = -3.6464 , Lag order = 4, p-value = 0.035	Dickey-Fuller = -2.7097 , Lag order = 4, p-value = 0.286
alternative hypothesis: stationary	alternative hypothesis: stationary
India	Japan
data: BSE Carbonex	data: S&P Topic 150 ESG
Dickey-Fuller = -3.1421 , Lag order = 4, p-value = 0.111	Dickey-Fuller = -4.0896 , Lag order = 4, p-value = 0.010
alternative hypothesis: stationary	alternative hypothesis: stationary
data: BSE 100	data: S&P Topic 150
Dickey-Fuller = -3.1282 , Lag order = 4, p-value = 0.116	Dickey-Fuller = -4.017 , Lag order = 4, p-value = 0.0141
alternative hypothesis: stationary	alternative hypothesis: stationary
Nordic	Pan Arab
data: D.J. Sustainability Nordic	data: S&P ESG Pan Arab
Dickey-Fuller = -3.8913 , Lag order = 4, p-value = 0.019	Dickey-Fuller = -5.4765 , Lag order = 4, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P Pan Arab Composite
Dickey-Fuller = -4.1847 , Lag order = 4, p-value = 0.01	Dickey-Fuller = -4.7307 , Lag order = 4, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Singapore	South Africa
data: SGX ESG	data: S&P SA Composite Carbon
Dickey-Fuller = -3.7853 , Lag order = 4, p-value = 0.024	Dickey-Fuller = -3.2927 , Lag order = 4, p-value = 0.08026
alternative hypothesis: stationary	alternative hypothesis: stationary
data: STI	data: S&P SA Composite
Dickey-Fuller = -3.1245 , Lag order = 4, p-value = 0.118	Dickey-Fuller = -4.3325 , Lag order = 4, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
South Korea	USA
data: DJSI Korea	data: S&P 500 Carbon efficient
Dickey-Fuller = -4.6712 , Lag order = 4, p-value = 0.01	Dickey-Fuller = -3.8686 , Lag order = 4, p-value = 0.020
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P 500
Dickey-Fuller = -3.8239 , Lag order = 4, p-value = 0.022	Dickey-Fuller = -3.899 , Lag order = 4, p-value = 0.019
alternative hypothesis: stationary	alternative hypothesis: stationary

Ta	ble	e 11	l. ADF	test	on c	quarter	ly	returns	of	select	t indices	3
----	-----	------	--------	------	------	---------	----	---------	----	--------	-----------	---

Australia	Austria
data: D.J. Sustainable Australian	data: CECE Sri Eur
Dickey-Fuller = -4.6092 , Lag order = 2, p-value = 0.01	Dickey-Fuller = -2.538 , Lag order = 2, p-value = 0.367
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P ASX 200	data: CECE Eur
Dickey-Fuller = -4.9185 , Lag order = 2, p-value = 0.01	Dickey-Fuller = -2.6844 , Lag order = 2, p-value = 0.311
alternative hypothesis: stationary	alternative hypothesis: stationary
Brazil	Canada
data: ICo2	data: DJSI Canada
Dickey-Fuller = -3.8867 , Lag order = 2, p-value = 0.029	Dickey-Fuller = -2.4676 , Lag order = 2, p-value = 0.394
alternative hypothesis: stationary	alternative hypothesis: stationary
data: IBX 50	data: DJSI North America Composite
Dickey-Fuller = -3.5703 , Lag order = 2, p-value = 0.054	Dickey-Fuller = -2.0473 , Lag order = 2, p-value = 0.554
alternative hypothesis: stationary	alternative hypothesis: stationary
Egypt	Germany
data: S&P EGX ESG	data: Okodax
Dickey-Fuller = -3.643 , Lag order = 2, p-value = 0.0469	Dickey-Fuller = -2.7974 , Lag order = 2, p-value = 0.268
alternative hypothesis: stationary	alternative hypothesis: stationary
data: EGX 100	data: Dax
Dickey-Fuller = -2.9257 , Lag order = 2, p-value = 0.219	Dickey-Fuller = -2.5088 , Lag order = 2, p-value = 0.378
alternative hypothesis: stationary	alternative hypothesis: stationary
India	Japan
data: BSE Carbonex	data: S&P Topic 150 ESG
Dickey-Fuller = -2.3256 . Lag order = 2, p-value = 0.448	Dickey-Fuller = -2.3661 . Lag order = 2. p-value = 0.432
alternative hypothesis: stationary	alternative hypothesis: stationary
data: BSE 100	data: S&P Topic 150
Dickey-Fuller = -2.2883 , Lag order = 2, p-value = 0.462	Dickey-Fuller = -2.401 , Lag order = 2, p-value = 0.4196
alternative hypothesis: stationary	alternative hypothesis: stationary
Nordic	Pan Arab
data: D.J. Sustainability Nordic	data: S&P ESG Pan Arab
Dickey-Fuller = -5.048 , Lag order = 2, p-value = 0.01	Dickey-Fuller = -6.7144 , Lag order = 2, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P Pan Arab Composite
Dickey-Fuller = -6.1911 , Lag order = 2, p-value = 0.01	Dickey-Fuller = -5.5767 . Lag order = 2, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
Singapore	South Africa
data: SGX ESG	data: S&P SA Composite Carbon
Dickey-Fuller = -2.6533 , Lag order = 2. p-value = 0.323	Dickey-Fuller = -2.1345 , Lag order = 2. p-value = 0.521
alternative hypothesis: stationary	alternative hypothesis: stationary
data: STI	data: S&P SA Composite
Dickey-Fuller = -2.6264 , Lag order = 2. p-value = 0.333	Dickey-Fuller = -2.119 , Lag order = 2. p-value = 0.5271
alternative hypothesis: stationary	alternative hypothesis: stationary
South Korea	USA
data: DJSI Korea	data: S&P 500 Carbon efficient
Dickey-Fuller = -4.9423 , Lag order = 2, p-value = 0.01	Dickey-Fuller = -4.0221 . Lag order = 2, p-value = 0.022
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P 500
Dickey-Fuller = -5.8974 , Lag order = 2. p-value = 0.01	Dickey-Fuller = -4.1164 . Lag order = 2. p-value = 0.019
alternative hypothesis: stationary	alternative hypothesis: stationary
······································	······································

Table 12. ADF	test on	semiannual	returns	of	select	indices
				~		

Australia	Austria
data: D.J. Sustainable Australian	data: CECE Sri Eur
Dickey-Fuller = -1.4663 , Lag order = 2, p-value = 0.775	Dickey-Fuller = -2.3068 , Lag order = 2, p-value = 0.455
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P ASX 200	data: CECE Eur
Dickey-Fuller = -1.4285 , Lag order = 2, p-value = 0.790	Dickey-Fuller = -2.1194 , Lag order = 2, p-value = 0.526
alternative hypothesis: stationary	alternative hypothesis: stationary
Brazil	Canada
data: ICo2	data: DJSI Canada
Dickey-Fuller = -3.3483 , Lag order = 2, p-value = 0.084	Dickey-Fuller = -4.7328 , Lag order = 2, p-value = 0.01
alternative hypothesis: stationary	alternative hypothesis: stationary
data: IBX 50	data: DJSI North America Composite
Dickey-Fuller = -1.9846 , Lag order = 2, p-value = 0.578	Dickey-Fuller = -1.8228 , Lag order = 2, p-value = 0.639
alternative hypothesis: stationary	alternative hypothesis: stationary
Egypt	Germany
data: S&P EGX ESG	data: Okodax
Dickey-Fuller = -1.459 , Lag order = 2, p-value = 0.7785	Dickey-Fuller = -3.1612 , Lag order = 2, p-value = 0.13
alternative hypothesis: stationary	alternative hypothesis: stationary
data: EGX 100	data: Dax
Dickey-Fuller = -1.4926 , Lag order = 2, p-value = 0.765	Dickey-Fuller = -2.2992 , Lag order = 2, p-value = 0.458
alternative hypothesis: stationary	alternative hypothesis: stationary
India	Japan
data: BSE Carbonex	data: S&P Topic 150 ESG
Dickey-Fuller = -1.372 , Lag order = 2, p-value = 0.8116	Dickey-Fuller = -1.688 , Lag order = 2, p-value = 0.6912

Mondal et al., International Journal of Accounting & Finance Review 13(1) (2022), 20-34

alternative hypothesis: stationary	alternative hypothesis: stationary
data: BSE 100	data: S&P Topic 150
Dickey-Fuller = -1.3849 , Lag order = 2, p-value = 0.806	Dickey-Fuller = -1.5948 , Lag order = 2, p-value = 0.726
alternative hypothesis: stationary	alternative hypothesis: stationary
Nordic	Pan Arab
data: D.J. Sustainability Nordic	data: S&P ESG Pan Arab
Dickey-Fuller = -1.3465 , Lag order = 2, p-value = 0.821	Dickey-Fuller = -1.1629 , Lag order = 2, p-value = 0.891
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P Pan Arab Composite
Dickey-Fuller = -1.3178 , Lag order = 2, p-value = 0.832	Dickey-Fuller = -1.1995 , Lag order = 2, p-value = 0.877
alternative hypothesis: stationary	alternative hypothesis: stationary
Singapore	South Africa
data: SGX ESG	data: S&P SA Composite Carbon
Dickey-Fuller = -2.2099 , Lag order = 2, p-value = 0.492	Dickey-Fuller = -1.6525 , Lag order = 2, p-value = 0.704
alternative hypothesis: stationary	alternative hypothesis: stationary
data: STI	data: S&P SA Composite
Dickey-Fuller = -2.4025 , Lag order = 2, p-value = 0.419	Dickey-Fuller = 0.21103 , Lag order = 2 , p-value = 0.99
alternative hypothesis: stationary	alternative hypothesis: stationary
South Korea	USA
data: DJSI Korea	data: S&P 500 Carbon efficient
Dickey-Fuller = -0.9547 , Lag order = 2, p-value = 0.927	Dickey-Fuller = -2.7147 , Lag order = 2, p-value = 0.300
alternative hypothesis: stationary	alternative hypothesis: stationary
data: S&P Global BMI	data: S&P 500
Dickey-Fuller = -1.1836 , Lag order = 2, p-value = 0.883	Dickey-Fuller = -2.6134 , Lag order = 2, p-value = 0.338
alternative hypothesis: stationary	alternative hypothesis: stationary

An autocorrelation test is conducted to test the randomness of returns on the same data, and the result is presented in table 13.

Table 13. Test of randomness (Autocorrelation)

			Bı	azil						India			
	ICo2			IBX 50					BSE Carb	onex		BSE 100	
Lag 1	AC	Box-Ljung Statistic	Significance (p-value)	AC	Box-Ljung Statistic	Significance (p-value)	Lag 1	AC	Box- Ljung Statistic	Significance (p-value)	AC	Box- Ljung Statistic	
daily	-0.01	0.10	0.76	-0.01	0.14	0.71	daily	0.09	15.05	0.00	0.09	15.41	0.00
weekly	0.04	0.72	0.40	0.04	0.71	0.40	weekly	0.04	0.62	0.43	0.04	0.67	0.41
monthly	-0.04	0.19	0.66	-0.04	0.18	0.67	monthly	0.13	1.98	0.16	0.14	2.18	0.14
quarterly	0.08	0.21	0.65	0.07	0.16	0.69	quarterl y	0.01	0.00	0.97	0.00	0.00	0.98
semi- annually	0.25	1.18	0.28	0.25	1.20	0.27	semi- annually	0.03	0.02	0.90	0.02	0.01	0.92
			Pan	Arab		•			aabbaay	Egypt		T.C.T. 400	
	10	S&P ESG Pan	Arab	Se	&P Pan Arab Co	omposite		10	S&P EGX	ESG	10	EGX 100	0: :0
Lag I	AC	Box-Ljung Statistic	(p-value)	AC	Box-Ljung Statistic	(p-value)	Lag I	AC	Box- Ljung Statistic	(p-value)	AC	Box- Ljung Statistic	ance (p- value)
daily	0.23	177.82	0.00	0.20	133.70	0.00	daily	0.19	65.83	0.00	0.22	85.70	0.00
weekly	-0.06	1.02	0.31	-0.01	0.03	0.87	weekly	-0.07	2.28	0.13	-0.01	0.10	0.75
monthly	-0.01	0.00	0.96	-0.29	6.15	0.01	monthly	0.04	0.24	0.62	0.18	4.22	0.04
quarterly	0.01	0.00	0.97	-0.08	0.19	0.67	quarter1 y	0.21	1.93	0.16	0.25	2.70	0.10
semi-	-0.02	0.00	0.95	-0.04	0.03	0.87	semi-	-0.10	0.23	0.63	-	0.35	0.56
annually			Conth	Africa			annually			Anotao	0.12		
	S/	PSA Composi	e Carbon	Annea	S&PSA Com	osite		D I Sustainable Australian S			S&P ASX 2	00	
Lag 1	AC	Box-Liung	Significance	AC	Box-Liung	Significance	Lag 1	AC	Box-	Significance	AC	Box-	Signific
		Statistic	(p-value)		Statistic	(p-value)			Ljung Statistic	(p-value)		Ljung Statistic	ance (p- value)
daily	0.03	1.20	0.27	-0.02	0.34	0.56	daily	-0.01	0.14	0.71	-0.01	0.45	0.50
weekly	-0.06	1.97	0.16	-0.06	1.93	0.17	weekly	-0.10	5.38	0.02	-0.09	4.55	0.03
monthly	-0.02	0.05	0.82	-0.02	0.06	0.80	monthly	0.07	0.53	0.47	0.07	0.57	0.45
quarterly	-0.24	2.47	0.12	-0.25	2.65	0.10	quarterl y	0.15	0.99	0.32	0.16	1.09	0.30
semi- annually	-0.42	4.04	0.04	-0.44	4.38	0.04	semi- annually	-0.16	0.56	0.45	0.18	0.72	0.40
· · · ·			Au	stria						Germa	ıy		
-		CECE Sri I	lur		CECE Eu	r			Okoda	x		Dax	
Lag 1	AC	Box-Ljung Statistic	Significance (p-value)	AC	Box-Ljung Statistic	Significance (p-value)	Lag 1	AC	Box- Ljung Statistic	Significance (p-value)	AC	Box- Ljung Statistic	Signific ance (p- value)
daily	0.13	50.60	0.00	0.08	21.21	0.00	daily	0.09	30.60	0.00	0.01	0.08	0.78
weekly	0.07	3.11	0.08	0.02	0.39	0.54	weekly	-0.04	0.75	0.39	-0.02	0.17	0.68
monthly	0.25	8.72	0.00	0.06	0.50	0.48	monthly	0.04	0.12	0.73	0.06	0.30	0.59
quarterly	0.28	3.77	0.05	0.27	3.62	0.06	quarterl y	-0.30	3.26	0.07	-0.21	1.59	0.21
semi- annually	-0.19	0.90	0.34	-0.14	0.48	0.49	semi- annually	-0.36	2.52	0.11	-0.30	1.74	0.19
			No	rdic						USA			
	1	DJ Sustainability	/ Nordic		S&P Global E	BMI		Sé	&P 500 Carbo	n efficient		S&P 500	
Lag 1	AC	Box-Ljung	Significance	AC	Box-Ljung	Significance	Lag 1	AC	Box-	Significance	AC	Box-	Signific
		Statistic	(p-value)		Statistic	(p-value)			Ljung Statistic	(p-value)		Ljung Statistic	ance (p- value)
daily	-0.01	0.22	0.64	0.15	60.88	0.00	daily	-0.06	9.96	0.00	-0.07	10.69	0.00
weekly	-0.08	2.04	0.15	-0.11	4.43	0.04	weekly	0.05	1.11	0.29	0.14	7.12	0.01
monthly	0.06	0.35	0.55	-0.11	1.11	0.29	monthly	-0.03	0.08	0.78	0.00	0.00	0.98

Mondal et al., International Journal o	f Accounting & Fir	nance Review 13(1) ((2022), 20-34
--	--------------------	----------------------	---------------

quarterly	0.02	0.02	0.89	-0.23	1.60	0.21	quarterl	0.04	0.06	0.81	0.05	0.08	0.77
semi- annually	0.06	0.07	0.79	-0.07	0.09	0.77	semi- annually	-0.20	0.71	0.40	-0.22	0.91	0.34
			Ca	inada						Japan	L		
	DJSI Canada			DJSI Nort America Composit	lh e				S&P Topic 15	50 ESG		S&P Topic 1	150
Lag 1	AC	Box-Ljung Statistic	Significance (p-value)	AC	Box- Ljung Statistic	Significance (p-value)	Lag 1	AC	Box- Ljung Statistic	Significance (p-value)	AC	Box- Ljung Statistic	Signific ance (p- value)
daily	0.05	4.45	0.04	-0.01	0.34	0.56	daily	0.01	0.16	0.69	0.02	0.78	0.38
weekly	0.02	0.39	0.53	-0.09	5.77	0.02	weekly	-0.08	3.08	0.08	-0.02	0.19	0.67
monthly	0.19	6.32	0.01	0.12	2.54	0.11	monthly	0.18	3.84	0.05	0.18	4.04	0.04
quarterly	0.15	1.25	0.26	0.06	0.24	0.62	quarterl y	0.22	2.12	0.15	0.29	3.72	0.05
semi- annually	0.22	1.49	0.22	0.12	0.44	0.51	semi- annually	-0.10	0.24	0.62	-0.09	0.19	0.66
			Sin	gapore						South Ko	orea		
		SGX ESO	3		STI				DJSI Kor	rea	1	S&P Global I	BMI
Lag 1	AC	Box-Ljung Statistic	Significance (p-value)	A.C.	Box Ljung Statistic	Significance (p-value)	Lag 1	AC	Box- LjungStat istic	Significance (p-value)	AC	Box- LjungStat istic	Signific ance (p- value)
daily	0.01	0.06	0.80	0.04	2.77	0.10	daily	-0.01	0.13	0.72	0.15	58.27	0.00
weekly	0.02	0.17	0.68	0.06	2.16	0.14	weekly	0.04	0.47	0.49	0.07	1.63	0.20
monthly	0.35	15.53	0.00	0.23	6.39	0.01	monthly	-0.08	0.48	0.49	-0.10	0.73	0.39
quarterly	0.25	2.79	0.10	0.25	2.79	0.10	quarterl y	-0.02	0.01	0.92	0.06	0.11	0.74
semi- annually	-0.08	0.15	0.70	-0.04	0.03	0.86	semi- annually	0.11	0.19	0.66	0.23	0.81	0.37

Tables 14 and 15 show the results of the normality tests of the returns of socially responsible indices.

Table 14. Tests of Normality (developing countries)

	Daily	Weekly	Monthly	Quarterly	Semiannually			
Brazil	Not normal	Not normal	Normal	Normal	Normal			
India	Not normal	Normal	Normal	Normal	Normal			
Pan Arab	Not normal							
Egypt	Not normal	Not normal	Normal	Not normal	Normal			
South Africa	Not normal	Not normal	Normal	Normal	Normal			
Source: Compiled by authors								

Table 15. Tests of Normality (developed countries)

	Daily	Weekly	Monthly	Quarterly	Semiannually
Australia	Not normal	Not normal	Not normal	Normal	Normal
Austria	Not normal				
Germany	Not normal	Not normal	Not normal	Normal	Normal
Nordic	Not normal				
USA	Not normal	Not normal	Not normal	Not normal	Normal
Canada	Not normal	Not normal	Normal	Normal	Normal
Japan	Not normal	Not normal	Normal	Normal	Normal
Singapore	Not normal				
South Korea	Not normal	Not normal	Not normal	Not normal	Normal

When the test of normality is done, tests of randomness are conducted. For a non-normal, non-parametric, and normal distribution, parametric tests are conducted. The runs test is the non-parametric test, and Autocorrelation and Augmented Dickey-Fuller (ADF) is the parametric tests used. If autocorrelation and ADF tests give similar results, the result is chosen as it is considered a better test than Autocorrelation (Higgs, 2005). In this scenario, the Autocorrelation test only plays a supportive role along with the findings of the ADF test. The randomness test results for developing, and developed countries are shown in Table 16.

Table 16. Tests of randomness

Developing country								
Daily return Weekly Monthly Quarterly Semiannual								
		return	return	return	return			
Brazil	random	random	non-random	non-random	random			
India	non-random	non-random	random	random	random			
Pan Arab	non-random	random	random	random	random			
Egypt	non-random	non-random	random	random	random			
South Africa	random	random	random	random	random			
		Develop	ed country					
Australia	random	random	random	non-random	random			
Austria	non-random	random	random	random	random			
Germany	non-random	random	random	random	random			
Nordic	non-random	random	random	random	random			
USA	non-random	random	random	random	random			

Canada	random	non-random	random	Random	non-random
Japan	random	random	non-random	Random	random
Singapore	random	random	random	random	random
South Korea	random	random	random	random	random

CONCLUSIONS

The analysis shows that Brazil, South Africa, Australia, Canada, Japan, Singapore, and South Korea has randomness. In contrast, India, Arabs, Egypt, Austria, Germany, Nordic, and the USA have non-randomness in daily returns. Weekly returns show randomness in Brazil, Arab, South Africa, Australia, Austria, Germany, Nordic, USA, Japan, Singapore, and South Korea, and non-random in India, Egypt, and Canada. Monthly returns show randomness in India, Arab, Egypt, South Africa, Australia, Austria, Germany, Nordic, USA, Canada, Singapore, and South Korea and non-randomness in Brazil and Japan. Quarterly returns show randomness in India, Arab, Egypt, South Africa, Australia, Austria, Germany, Nordic, USA, Canada, Singapore, and South Korea and non-randomness in India, Arab, Egypt, South Africa, Australia. Germany, Nordic, USA, Canada, Japan, Singapore, and South Korea and non-randomness for Brazil and Australia. Semiannual returns are random in all countries except Canada. For non-random markets, technical trading can be applied to predict future prices, and above-average returns can be obtained. However, the result comes with a rider as markets tend to overreact over a given information which may create a prediction error (Singh, 2011). It has also been observed that SRI returns get normal as the period of return calculation is increased to half yearly from daily except in Canada. The finding coincides with Fama (1998), Mondal & Singh (2020), and Singh et al. (2016), who propagated that market is efficient in the long run.

It can be observed that market efficiency is not uniform across countries. This is in line with the Adaptive market hypothesis for socially responsible indices (Lo, 2004). Lo (2004) and Grossman and Stiglitz (1980) argued that arbitrage opportunities exist in the market in contrast with the EMH principle. With adequate arbitrage opportunities, investors will get incentivized to collect and act on the information. Hence, markets are irrational and not always random, as postulated by the EMH (Singh, 2019). It may indicate a seasonality factor in SRIs at different times (Sah, 2009).

Institutional Review Board Statement: Ethical review and approval were waived for this study because the research does not deal with vulnerable groups or sensitive issues.

Funding: The authors received no direct funding for this research.

Informed Consent Statement: No human subjects were utilized during this study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

- Alexander, S. S. (1961). Price movements in speculative markets: Trends or random walks. *Industrial Management Review* (*pre-1986*), 2(2), 7. Retrieved from http://history.technicalanalysis.org.uk/Alex64.pdf
- Alexeev, V., & Tapon, F. (2011). Testing weak form efficiency on the Toronto Stock Exchange. *Journal of Empirical Finance*, 18(4), 661-691.
- Althouse, L. A., Ware, W. B., & Ferron, J. M. (1998). Detecting Departures from Normality: A Monte Carlo Simulation of a New Omnibus Test Based on Moments.
- Amenc, N., Goltz, F., & Tang, L. (2010). Adoption of green investing by institutional investors: a european survey. France: An EDHEC-Risk Institute.
- Bachelier, L. (1964). Theory of Speculation, the Random Character of Stock Prices, translation of Bacheliers 1900 doctoral thesis.
- Bhattacharjee, J., & Singh, R. (2017). Awareness about equity investment among retail investors: A kaleidoscopic view. *Qualitative Research in Financial Markets*, 9(4), 310–324. https://doi.org/10.1108/QRFM-04-2017-0036
- Bordoloi, D., Singh, R., Bhattacharjee, J., & Bezborah, P. (2020). Assessing the awareness of Islamic law on equity investment in the state of Assam, India. *Journal of Islamic Finance*, 9(1), 001–012.
- Borges, M. R. (2010). Efficient market hypothesis in European stock markets. *The European Journal of Finance*, 16(7), 711-726.
- Clarke, J., Jandik, T., & Mandelker, G. (2001). The efficient markets hypothesis. Expert financial planning: Advice from industry leaders, 126-141.
- Cooper, J. C. (1982). World stock markets: some random walk tests. Applied Economics, 14(5), 515-531.
- Daskalakis, G., & Markellos, R. N. (2008). Are the European carbon markets efficient? *Review of futures markets*, 17(2), 103-128.
- De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3), 793-805.
- Deb, S., & Singh, R. (2018). Dynamics of risk perception towards mutual fund investment decisions. Iranian Journal of Management Studies, 11(2), 407–424.
- Eccles, R. G., Ioannou, I., & Serafeim, G. (2014). The impact of corporate sustainability on organizational processes and performance. *Management Science*, *60*(11), 2835–2857.
- Fama, E. F. (1965). The behavior of stock-market prices. *The journal of Business*, 38(1), 34–105.

Author Contributions: Conceptualization, R.S.; Methodology, R.S.; Software, S.M.; Validation, R.S. and S.M.; Formal Analysis, R.S. and S.M.; Investigation, R.M.; Resources, R.S.; Data Curation, S.M. and V.Y.; Writing – Original Draft Preparation, S.M.; Writing – Review & Editing, V.Y.; Visualization, R.S.; Supervision, R.S.; Project Administration, R.S., S.M. and V.Y.; Funding Acquisition, R.S. and S.M. Authors have read and agreed to the published version of the manuscript.

Fama, E. F., & Blume, M. E. (1966). Filter rules and stock-market trading. The Journal of Business, 39(1), 226-241.

- Fama, E. F., & French, K. R. (1988). Permanent and temporary components of stock prices. *Journal of political Economy*, 96(2), 246–273.
- Frennberg, P., & Hansson, B. (1993). Testing the random walk hypothesis on Swedish stock prices: 1919–1990. *Journal* of Banking & Finance, 17(1), 175-191.
- Geczy, C., Stambaugh, R., & Levin, D. (2005). Investing in socially responsible mutual funds.
- Granger, C. W., & Morgenstern, O. (1963). Spectral analysis of New York stock market prices 1. Kyklos, 16(1), 1-27.
- Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. *The American economic review*, 70(3), 393-408.
- Guidi, F., & Gupta, R. (2011). Are ASEAN stock market efficient? Evidence from univariate and multivariate variance ratio tests. Discussion Papers in Finance, 201113, pp. 488–502.
- Hong, H., & Kacperczyk, M. (2009). The price of sin: The effects of social norms on markets. *Journal of Financial Economics*, 93(1), 15-36.
- Jensen, M. C. (1967). Random walks: reality or myth-comment. Financial Analysts Journal, 23(6), 77-85.
- Jensen, M. C., & Benington, G. A. (1970). Random walks and technical theories: Some additional evidence. *The Journal* of *Finance*, 25(2), 469-482.
- Kajol, K., & Singh, R. (2022). Users' Awareness Towards Digital Financial Transactions: A Study Conducted in India. In International Working Conference on Transfer and Diffusion of I.T. (pp. 331-345). Springer, Cham
- Kajol, K., Biswas, P., Singh, R., Moid, S., & Das, A. K. (2020). Factors affecting disposition effect in equity investment: A Social Network Analysis approach. *International Journal of Accounting & Finance Review*, 5(3), 64-86. https://doi.org/10.46281/ijafr.v5i3.845
- Kajol, K., Nath, M., Singh, R., Singh, H. R., & Das, A. K. (2020). Factors affecting seasonality in the stock market: A social network analysis approach. *International Journal of Accounting & Finance Review*, 5(4), 39–59. https://doi.org/10.46281/ijafr.v5i4.888
- Kajol, K., Singh, R., & Paul, J. (2022). Adoption of digital financial transactions: A review of literature and future research agenda. *Technological Forecasting and Social Change*, 184, 121991
- Kempf, A., & Osthoff, P. (2007). The effect of socially responsible investing on portfolio performance. *European Financial Management*, 13(5), 908-922.
- Kendal, M. (1953). The analysis of economic time series, part 1: prices. *Journal of the Royal Statistical Society*, 96(1), 11–25.
- Kratz, O. S. (1999). Frontier emerging equity markets securities price behavior and valuation. Springer Science & Business Media.
- Krishna Rao, N., & Mukherjee, K. (1971, January-July). Random-Walk Hypothesis: An Empirical Study. Arthaniti.
- Levy, R. A. (1967). Random walks: Reality or myth. *Financial Analysts Journal*, 23(6), 69–77.
- Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective.
- Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. *The review of financial studies*, 1(1), 41–66.
- Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of economic perspectives, 17(1), 59-82.
- Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. *The journal of Finance*, 25(2), 383-417.
- Mynhardt, R., Makarenko, I., & Plastun, O. (2017). Market efficiency of traditional stock market indices and social responsible indices: The role of sustainability reporting.
- Panas, E. (1990). The Behaviour of Athens Stock Prices Applied Economics. Applied Economics, p. 22, 1715-27.
- Poterba, J. M., & Summers, L. H. (1988). Mean reversion in stock prices: Evidence and implications. *Journal of financial* economics, 22(1), 27-59.
- Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and andersondarling tests. *Journal of statistical modeling and analytics*, 2(1), 21-33.
- Renneboog, L., Ter Horst, J., & Zhang, C. (2008). The price of ethics and stakeholder governance: The performance of socially responsible mutual funds. *Journal of Corporate Finance*, *14*(3), 302-322.
- Sah, A. N. (2009). Stock market seasonality: A study of the Indian stock market. Retrieved from http://ssrn.com/abstract.
- Sethi, S. P. (2005). Investing in socially responsible companies is a must for public pension funds-because there is no better alternative. *Journal of Business Ethics*, 56(2), 99–129.
- Singh, R. (2012). Risk perception of Investors in initial public offer of shares: A psychometric study. *Asia-Pacific Journal* of Risk and Insurance, 6(2). https://doi.org/10.1515/2153-3792.1131
- SINGH, R. (2019). Behavioural finance. PHI Learning Pvt. Ltd.
- Singh, R., & Barman, H. (2011). Learning Investors Club. Journal of Emerging Technologies and Business Management, 2(1), 39-47.
- Singh, R., & Bhattacharjee, D. (2010a). Equity Investment Decisions: Are Demographic Variables Really Significant? *Paradigm*, 14(1), 7–11.
- Singh, R., & Bhattacharjee, D. (2010b). Impact of demographic variables on indirect equity investment: An empirical study. *Indira Management Review*, 4(1), 4–11.
- Singh, R., & Bhattacharjee, J. (2019). Measuring equity share related risk perception of investors in economically backward regions. *Risks*, 7(1), 12. https://doi.org/10.3390/risks7010012

- Singh, R., & Bhowal, A. (2010). Imparting investment education to employees by the employer: an expectation-experience gap study. *Amity Management Analyst*, 5(2), 57–65.
- Singh, R., & Bhowal, A. (2011). Development of marketing-driven measure of risk perception. *The Journal of Risk Finance*, 12(2), 140–152.
- Singh, R., & Bhowal, A. (2012). Marketing dimension of equity related risk perception of employees: Own company's shares vs. other company's shares. *Management Insight*, 6(2), 22–36.
- Singh, R., & Das, S. (2013). Is Islamic equity index an investment heaven? A comparative study between SHA 50 and Nifty 50 of India. *Journal of Islamic Economics, Banking and Finance*, 9(2), 103–114.
- Singh, R., & Kar, H. (2011). Do the highly educated subscribers aware of it? New Pension Scheme in India. SIBACA Management Review, 1(1), 8-16.
- Singh, R., & Leepsa, N. M. (2016). Feasibility of Investing in Carbon Efficient Equity Portfolios. *International Journal of Banking and Finance*, *12*(2), 23–41.
- Singh, R., Bhattacharjee J., K. K. (2022). Factors Affecting Awareness towards Investment In Equity Shares: A Social Network Analysis Approach. Academy of Marketing Studies Journal, 26(5), 1-14.
- Singh, R., Bhattacharjee, J., & Kajol, K. (2021). Factors Affecting Risk Perception in Respect of Equity Shares: A Social Network Analysis Approach. *Vision*, 09722629211046082.
- Singh, R., Leepsa, N. M., & Kushwaha, N. (2016). Testing the weak form of efficient market hypothesis in carbon efficient stock indices along with their benchmark indices in select countries. *Iranian Journal of Management Studies*, 9(3), 627–650.
- Statman, M., & Glushkov, D. (2009). The wages of social responsibility. Financial Analysts Journal, 65(4), 33-46.
- UNT. (2014). Department of Geography. Retrieved from http://www.unt.edu/:http://geography.unt.edu/~wolverton/Normality %20Tests%20in%20SPSS.pdf, Accessed on 13 February 2015.
- Urrutia, J. L. (1995). Tests of random walk and market efficiency for Latin American emerging equity markets. *Journal of financial research*, *18*(3), 299-309.
- Welford, R. (2004). Corporate Social Responsibility in Europe and Asia: Critical Elements and Best Practice. *Journal of corporate citizenship*, pp. 13, 31–47.
- Worthington, A. C., & Higgs, H. (2005). Weak-form market efficiency in Asian emerging and developed equity markets: Comparative tests of random walk behaviour.
- Yen, G., & Lee, C. F. (2008). Efficient market hypothesis (EMH): past, present and future. Review of Pacific Basin Financial Markets and Policies, 11(02), 305-329.

Publisher's Note: CRIBFB stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

@ 2022 by the authors. Licensee CRIBFB, USA. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

International Journal of Accounting & Finance Review (P-ISSN 2576-1285 E-ISSN 2576-1293) by CRIBFB is licensed under a Creative Commons Attribution 4.0 International License.