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Abstract 

This paper gives a rather general view on the L1 norm criterion on the area of data analysis and related topics. We 
tried to cover all aspects of mathematical properties, historical development, computational algorithms, 

simultaneous equations estimation, statistical modeling, and application of the L1 norm in different fields of 

sciences. 
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1. Introduction 

Although the L1 norm is an old topic in science, lack of a general book or paper on this subject induced me to 

gather a relatively complete list of references in this paper. The methods related to L1 norm are very broad and 
summarizing them is very difficult. However, it has been tried to have a glance at almost all related areas. The 

sections are designed as separate modules, so that the reader may skip some of the sections without loss of 

continuity of the subject. 

While the least squares method of estimation of the regression parameters is the most commonly used 

procedure, some alternative techniques have received widespread attention in recent years. Conventionally, interest 

in other methods of estimation has been generated by the unsatisfactory performance of least squares estimators in 

certain situations when some model assumptions fail to hold or when large correlations exist among the regressors. 

However, the least squares regression is very far from optimal in many non-Gaussian situations, especially when the 

errors follow distributions with longer tails. In particular, when the variance of the error is infinite. While intuition 

may dispel consideration of errors with infinite variance, in many cases, studies have shown that, in fact, certain 

distributions with infinite variances may be quite appropriate models. An infinite variance means thick tail error 
distribution with lots of outliers. Of course, observed distributions of economic variables will never display infinite 

variances. However, the important issue is not that the second moment is actually infinite, but the interdecile range 

in relation to the interquartile range is sufficiently large that one is justified in acting as though the variance is 

infinite. Even when the majority of the errors in the model follow a normal distribution, it often occurs that a small 

number of observations are from a different distribution. That is, the sample is contaminated with outliers. Since 

least squares gives a lot of weight to outliers, it becomes extremely sample dependent and it is well known that the 

performance of this estimator is markedly degraded in this situation. It has been stated that even when errors follow 

a normal distribution, an alternative to least squares may be required; especially if the form of the model is not 

exactly known or any other specification error exists. Further, least squares is not very satisfactory if the quadratic 

loss function is not a satisfactory measure of loss. Loss denotes the seriousness of the nonzero prediction error to the 

investigator, where prediction error is the difference between the predicted and the observed values of the response 

variable. It has been shown that for certain economic problems least absolute errors gives more satisfactory results 
than least squares, because the former is less sensitive than the latter to extreme errors, and consequently is resistant 

to outliers. It should be noted that the least absolute errors estimates have maximum likelihood properties and hence 

are asymptotically efficient when the errors follow the Laplace distribution. 

Although least absolute errors estimator is very old, it has emerged in the literature again and has attracted 

attention in the last two decades because of unsatisfactory properties of least squares. Now, this method is discussed 

in econometrics textbooks such as Kmenta (1986) and Maddala (1977). Many Master's and Ph.D. dissertations have 

been written on this subject in different departments such as Lawson (1961), Burgoyne (1965), Gentleman (1965), 

Barrodale (1967), Oveson (1968), Lewis (1969), Cline (1970), Hunt (1970), Groucher (1971), Henriksson (1972), 
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Bassett (1973), Forth (1974), Anderson (1975), Ronner (1977), Nyquist (1980), Clarke (1981), Kotiuga (1981), 

Gonin (1983), Busovaca (1985), Kim ( ), Bidabad (1989a,b) which are more recent (see bibliography for the 

corresponding departments and universities). 

Robust property of this estimator is its advantage to deal with large variance error distributions. Since many 

economic phenomena such as distribution of personal income, security returns, speculative prices, stock and 

commodity prices, employment, asset size of business firms, demand equations, interest rate, treasury cash flows, 
insurance, price expectations, and many other economic variables fall within the category of infinite variance (see, 

Ganger and Orr (1972), Nyquist and Westlund (1977), Fama (1965), Goldfeld and Quandt (1981), Sharpe (1971)) it 

is necessary to turn the economists attention to this estimator. There are many other works which confirm the 

superiority of least absolute to least squares estimator such as interindustry demand analysis of Arrow and 

Hoffenberg (1959), investment models of Meyer and Glauber (1964), security and portfolios analysis of Sharpe 

(1971), Danish investment analysis of Kaergard (1987) and so forth. 

Many new economic theories weaken the assumption of rationality of human behavior. This relative 

irrationality is a major source of large variances and outliers in economic data. Therefore the least absolute errors 

estimator becomes a relevant estimator in the cases that rationality is a strong assumption. 

Another major application of this estimator is on data with measurement errors. This type of errors makes 

variances large and forces the observations to locate far from reality, which obviously causes outliers. Existence of 

two important types of measurement errors, sampling, and nonsampling errors, specifically in countries with poor 
statistics such as developing countries make this estimator a basic tool of analysis. 

Unknown specification errors in regression models because of the complexity of human behavior always 

occurs in the mathematical formulation of human-related problems. Specification error occurs whenever the 

formulation of the regression equation or one of the underlying assumptions is incorrect. In this context when any 

assumption of the underlying theory or the formulation of the model does not hold, a relevant explanatory variable is 

omitted, or an irrelevant one is included, qualitative change of the explanatory variable is disregarded, incorrect 

mathematical form of the regression is adopted, or incorrect specification of the way in which the disturbance enters 

the regression equation is used and so on; specification error exits (see also, Kmenta (1986)). Since specification 

errors are not always clear to researcher, least squares is a poor estimator, and other alternatives as least absolute 

errors estimators become attractive. 

Although the least absolute errors estimator benefits from optimal properties in many econometric problems, 
it is not a commonly used tool. This is to some extent due to difficulties of calculus with absolute value functions. 

When the model is enlarged, and equations enter simultaneously, difficulties of computation increase. Another 

problem with this estimator is that the properties of the solution space is not completely clear, and the corresponding 

closed form of the solution have not been derived yet. 

Thus these three important problems of algebraic closed form, computational difficulties, and solution space 

properties are the main obstacles that prevent the regular use of L1 norm estimator. Any attempt to remove these 

obstacles are worthy. 

2. Lp norm and regression analysis 

Given a point u=(u1,...,un) in Rn, Minkowski norm or Lp norm can be written as the following expression, 

n 

││u││p = dp(u,0) =[  │ui│
p]1/p                                                              (1) 

i=1 

When p=2, we are confronted with Euclidian or L2 norm. Thus, Euclidian distance is a special case of Lp distance 

(see, Ralston and Rabinowitz (1985)). 

The following overdetermined system of equations is given, 

y = Xß + u                                           (2) 

where, y is a nx1 vector of dependent variables, X, a nxm matrix of independent or explanatory variables with n>m, 

ß, a mx1 vector of unknown parameters and u is a nx1 vector of random errors. The problem is to find the unknown 

vector ß such that the estimated value of y be close to its observed value. A class of procedures which obtains these 
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estimated values is Lp norm minimization criterion (see, Narula (1982)). In this class, ││u││p is minimized to find 

the ß vector, 

min S = min ││u││p = min ││y-Xß││p = 

ß        ß                         ß 

n                                         n        m 

min [  │yi-xiß│p ]1/p = min [  │yi-  ßjxij│
p ]1/p ==> 

ß   i=1                             ß    i=1      j=1 

 n                                n         m 

min   │yi- xiß│p = min   │yi-  ßjxij│
p                                                                          (3) 

ß  i=1                      ß   i=1       j=1 

where yi is the ith element of y and xi is the ith row of the matrix X. Any value of p [1, ] may be used to find ß in 

(3) (see, Money et al. (1978a), Rice (1933)), but each value of p is relevant for special types of error distributions. 

Many authors have investigated this problem (see, Barrodale (1968), Barr et al (1980a,b,c,81a,b), Money et al 

(1978b,82), Gonin and Money (1985a,b), Sposito and Hand (1980), Sposito and Hand and Skarpness (1983), 

Sposito (1987b)). However, justification of p comes from the following theorem (see, Kiountouzis (1971), Rice and 

White (1964), Hogan (1976), Taguchi (1974,78)). 

Theorem: If in model (2), X is nonstochastic and E(u)=0, E(uuT)= ²I, and u distributed with f(u)=h.exp(-k│u│p), 

where h and k are constants and p [1, ]; then the "best" ß with maximum likelihood properties is a vector which 

comes from minimization of (3). 

Certain values of p have particular importance (see, Box and Tiao (1962), Theil (1965), Anscombe (1967), 

Zeckhauser and Thompson (1970), Blattberg and Sargent (1971), Kadiyala (1972), Maddala (1977)). L  norm 

minimization of (3) is called Tchebyshev or uniform norm minimization or minimum maximum deviations and has 

the maximum likelihood properties when u has a uniform probability distribution function. When p=2, we are 

confronted with the least squares method. In this case, if the errors’ distribution is normal, it is the best unbiased 

estimator (see, Anderson (1962), Theil (1971)). When p=1, we have L1 norm or Gershgorin norm minimization 

problem. It is also called least or minimum sum of absolute errors (MSAE, LSAE), minimum or least absolute 

deviations, errors, residuals, or values (MAD, MAE, MAR, MAV, LAD, LAE, LAR, LAV), L1 norm fit, 
approximation, regression or estimation. 

Harter (1974a,b,75a,b,c,76) monumental papers provide a chronology of works on nearly all the estimators 

which include L1 norm estimation too. A concise review of data analysis based on the L1 norm is presented by 

Dodge (1987), and a brief discussion is given by Gentle (1977) too. Narula and Wellington (1982) and Narula 

(1987) give a brief and concise presentation of L1 norm regression. Blattberg and Sargent (1971) show that if the 

errors of the regression follow the second law of Laplace (two-tailed exponential distribution) with probability 

density function 

f(u)=(1/2 ).exp(-│u│/ )                                                                                                      (4) 

where var(u)=2 ², then L1 norm minimization leads to maximum likelihood estimator. 

3. Properties of the L1 norm estimation 

Similar to other criteria, the L1 norm estimation has its own properties, which are essential in computational 

and statistical viewpoints. The more important properties are as follows. 

3.1 Invariance property 

An estimator ß^(y,X) of population parameter ß is invariant if, 
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ß^( y,X) = ß^(y,X),          [0, )                                                                                     (5) 

Gentle and Sposito (1976), Koenker and Bassett (1978) have proved that the Lp norm estimator of ß is invariant 

when the regression model is linear. The Lp norm estimator is not invariant for general nonlinear models. The 

invariance property is the homogeneity of degree one of the ß^ solution function. 

3.2 Transformation of variables 

If Rm, by transforming y to y+X  the optimal value of ß^ will increase by , (see, Koenker and Bassett 

(1978)); 

ß^(y+X ,X) = ß^(y,X) +                                                                                                   (6) 

If A is a mxm nonsingular matrix, the transformation of X to XA premultiplies optimal ß^ by the inverse of A (see, 

Taylor (1974), Koenker and Bassett (1978), Bassett and Koenker (1978)). 

ß^(y,XA) = A-1ß^(y,X)                                                                                                       (7) 

3.3 convexity of the objective function 

 To show the convexity of S in (3), suppose m=1; the objective function (3) reduces to 

 n                          n 

S =   │yi - ß1xi1│ =   Si                                                                                                  (8) 

  i=1                       i=1 

where Si=│yi-ß1xi1│. If we plot Si as a function of ß1, then we will have a broken line in Sxß1 plane, and its 

function value is zero at ßi1=yi/xi1. The slope of the half-lines to the left and right of ßi1 are      -│xi1│ and │xi1│, 

respectively. So, Si's are all convex, and hence their sum S is also convex with slope at any ß1 equal to the sum of 

the slopes of the Si's at that value of ß1 (see, Karst (1958), Taylor (1974)). 

Consider now (3) when m=2, 

 n                                      n 

S =   │yi - ß1xi1 – ß2xi2│ =  Si                                                                                      (9) 

  i=1                                  i=1 

Where Si=│yi-ß1xi1-ß2xi2│. We may plot Si as a function of ß1 and ß2. Every Si is composed of two half-planes 

in Sxß1xß2 space that intersect in the ß1xß2 plane. Thus Si is convex downward which its minimum locates on the 

intersection of the two half-planes. Since Si's are all convex, their sum S surface is convex too. Extension to m 

independent variables is straightforward. In this case, each Si consists of two m dimensional half- hyperplanes in 

Sxß1x...xßm space intersecting in the ß1x...xßm hyperplane, and as before is convex in the opposite direction of the 

S axis. S, which is the sum of all these half-hyperplanes forms a polyhedron hypersurface which is convex too. 

3.4 Zero residuals in the optimal solution 

 L1 norm regression hyperplane always passes through r of thy n data points, where r is rank of the X matrix. 
Usually, X is of full rank, and thus r is equal to m. So, for the number of parameters, there exist zero residuals for 

the minimal solution of (3). This implies that L1 norm regression hyperplane must pass through m observation points 

(see, Karst (1959), Taylor (1974), Money et al. (1978), Appa and Smith (1973), Gentle and Sposito and Kennedy 

(1977)). 

This phenomenon is because of the polyhedron shape of the S. It is obvious that the minimum solution occurs 

on at least one of the corners of S, and the corners of S are the loci of changes in slopes of the polygonal 
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hypersurface. Note that these corners and also edges of S will be above the intersections of m subset of the following 

n hyperplanes. 

m 

yi -    ßjxij = 0    i {1,...,n}                                                                                               (10) 

 j=1 

Since each of these hyperplanes corresponds to a particular m subset of observations, there will be m observations 

that lie on the regression hyperplane (see, Taylor (1974)). 

3.5 Optimality condition 

 This condition is derived from the Kuhn-Tucker necessary condition of nonlinear programming and proved 

by Gonin and Monpy (1987b) and Charalambous (1979). Define A={i│yi-xiß
*=0} and I={i│yi-xiß

*╪0}; in linear 

L1 norm regression, a necessary and sufficient condition for ß* to be a global L1 norm solution is the existence of 

multipliers i [-1,1] such that: 

  ixi +    sgn(yi-xiß
*)xi = 0                                                                                        (11) 

  i A          i I 

(see also, El-Attar and Vidyasagar and Dutta (1976). Appa and Smith (1973) showed that this solution is a 

hyperplane such that: 

│n+ - n-│  m                                                                                                                   (12) 

where n+ and n- are the number of observations above and below the regression hyperplane, respectively. 

3.6 Unique and non-unique solutions 

 Since S is a convex polyhedron hypersurface, it always has a minimum. This solution is often unique. 

Sometimes the shape of S is such that a line or a closed polygon or polyhedron or hyperpolyhedron segment of S is 

parallel to ß1x...xßm hyperplane. On this case the L1 norm regression parameters are not unique and infinite points 

of the mentioned hyperpolyhedron are all solutions (see, Moroney (1961), Sielken and Hartley (1973), Taylor 

(1974), Farebrother (1985), Sposito (1982), Harter (1977)). 

3.7 Interior and sensitivity analysis 

Narula and Wellington (1985) Showed that the L1 norm estimates might not be affected by certain data 

points. Thus deleting those points does not change the estimated values of the regression parameters. In another 

discussion, they called sensitivity of L1 norm estimates, determined the amounts by which the value of response 

variable yi can be changed before the parameters estimates are affected. Specifically, if the value of yi increases or 

decreases without changing the sign of ui, the solution of the parameters will not change (see, Gauss (1809), 

Farebrother (1987b)). 

For the topology of L1 norm approximation and its properties see Kripke and Rivlin (1965), Vajda (1987), 
Hromadka II et al. (1987). Other properties of the L1 norm regression are discussed by Gentle and Kennedy and 

Sposito (1976,77), Assouad (1977), Sposito and Kennedy and Gentle (1980), Bassett (1987,88a,b). 

4. Chronology and historical development (1632-1928) 

The origin of L1 norm estimation may be traced back to Galilei (1632). In determining the position of a 

newly discovered star, he proposed the least possible correction in order to obtain a reliable result (see, Ronchetti 

(1987) for some direct quotations). Boscovich (1757) for the first time, formulated and applied the minimum sum of 

absolute errors for obtaining the best fitting line given three or more pairs of observations for a simple two-variable 

regression model. He also restricts the line to pass through the means of the observation points. That is, 
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  n 

min :    │yi-ß0-ß1xi1│ 

ß0,ß1 i=1 

n                                                                                                                               (13) 

s.to:   (yi-ß0-ß1xi1)=0 

i=1 

Boscovich (1760) gives a simple geometrical solution to his previous suggestion. This paper has been discussed by 

Eisenhart (1961) and Sheynin (1973). In a manuscript, Boscovich poses the problem to Simpson and Simpson gives 

an analytical solution to the problem (see, Stigler (1984)). 
Laplace (1773) provides an algebraic formulation of an algorithm for the L1 norm regression line, which 

passes through the centroid of observations. In Laplace (1779), the extension of L1 norm regression to observations 

with different weights has also been discussed. Prony (1804) gives a geometric interpretation of Laplace's (1779) 

method and compares it with other methods through an example. Svanberg (1805) applies Laplace's method in 

determining a meridian arc, and Von Lindenau (1806) uses this method in determination of the elliptic meridian. 

Gauss (1809) suggests the minimization of the sum of absolute errors without constraint. He concludes that 

this criterion necessarily sets m of the residuals equal to zero, where m is the number of parameters, and further, the 

solution obtained by this method is not changed if the value of the dependent variable is increased or decreased 

without changing the sign of the residual. This conclusion is recently discussed by Narula and Wellington (1985) 

which explained in the previous section under the subject of interior and sensitivity analysis. He also noted that 

Boscovich or Laplace estimators which minimize the sum of absolute residuals with zero-sum of residuals 

constraint, necessarily set m-1 of the residuals equal to zero (see, Stigler (1981), Farebrother (1987b)). 
Mathieu (1816) used Laplace's method to compute the eccentricity of the earth. Van Beeck-Calkoen (1816) 

advocates the using of the least absolute values criterion in fitting curvilinear equation obtained by using powers of 

the independent variable. 

Laplace (1818) adapted Boscovich's criterion again and gave an algebraic procedure (see, Farebrother 

(1987b)). Let x1* and y* be the means of xi1 and yi then, 

ß0 = y* - ß1x1*                                                                                                                  (14) 

Value of ß1 is found by, 

n 

min: S =  │yi~ - ß1xi1~│                                                                                                (15) 

ß1      i=1 

where, xi1~ and yi~ are deviations of xi1 and yi from these means respectively. By rearranging the observations in 

descending order of yi~/xi1~ values, Laplace notes that S is infinite when ß1 is infinite and decreases as ß1 is 

reduced. ß1 reaches the critical value yt~/xt1~ when it again begins to increase. This critical value of ß1 is 

determined when, 

t-1                    n                   t 

 │xi1~│ < ½  │xi1~│    │xi1~│                                                                          (16) 

  i=1                  i=1                i=1 

This procedure to find a1 is called weighted median and has been used in many other algorithms such as Rhodes 

(1930), Singleton (1940), Karst (1958), Bloomfield and Steiger (1980), Bidabad (1987a,b,88a,b) later. Bidabad 

(1987a,b,88a,b) derives the condition (16) via discrete differentiation method. 

http://www.cribfb.com/journal/index.php/afbr


Copyright © CC-BY-NC 2019, CRIBFB | AFBR 

www.cribfb.com/journal/index.php/afbr                                       Australian Finance & Banking Review                                          Vol. 3, No. 1; 2019 

 

49 
  

Fourier (1824) formulates least absolute residuals regression as what we would now call linear programming; 

that is the minimization of a linear objective function subject to linear inequality constraints. 

Edgeworth (1883) presents a philosophical discussion on differences between minimizing mean square errors 

and mean absolute errors. Edgeworth (1887a,b) proposed a simple method for choosing the regression parameters. 

By fixing m-1 of the parameters, he used Laplace's procedure to determine the optimal value of the remaining 

parameter. Repeating this operation for a range of values for m-1 fixed parameters, he obtained a set of results for 
each of m possible choices of the free parameters. Edgeworth drops the restriction of passing through the centroid of 

data. Turner (1887) discusses the problem of non-unique solutions under the least absolute error criterion as a 

graphical variant of Edgeworth (1887a) as a possible drawback to the method. Edgeworth (1888) replies to Turner's 

criticism by proposing a second method for choosing the two parameters of least absolute error regression of a 

simple linear model which makes no use of the median loci of his first method. Edgeworth, in this paper, followed 

Turner's suggestion for graphical analysis of steps to reach the minimum solution. 

Before referring to double median method of Edgeworth (1923), it should be noted that Bowley (1902) 

completes the Edgeworth's (1902) paper by a variant of double median method which presented after him by 

Edgeworth (1923). This variant ignores the weights attached to errors. 

Edgeworth (1923) discussed the more general problem of estimating the simple linear regression parameters 

by minimizing the weighted sum of the absolute residuals. He restates the rationale for the method and illustrates its 

usage through several examples. He also considers the nonunique solution problem. His contribution is called 
double median method. 

Estienne (1926-28) proposes replacing the classical theory of errors of data based on least squares with what 

he calls a rational theory based on the least absolute residual procedure. Bowley (1928) summarizes the Edgeworth's 

contributions to mathematical statistics, which includes his work on L1 norm regression. Dufton (1928) also gives a 

graphical method of fitting a regression line. 

Farebrother (1987b) summarizes the important contributions to L1 norm regression for the period of 1793-

1930. For more references see also Crocker (1969), Harter (1974a,b,75a,b,c,76), Dielman (1984). 

Up to 1928, all algorithms had been proposed for simple linear regression. Though some of them use 

algebraic propositions, are not so organized to handle multiple L1 norm regression problem. In the next section, we 

will discuss the more elaborated computational methods for simple and multiple L1 norm regressions not in a 

chronological sense; because many digressions have occurred. We may denote the period of after 1928 the time of 

modern algorithms in the subject of L1 norm regression. 

5. Computational algorithms 

Although a closed form of the solution of L1 norm regression has not been derived yet, many algorithms have 

been proposed to minimize its objective function (see, Cheney (1966), Chambers (1977), Dielman and Pfaffenberger 

(1982,84)). Generally, we can classify all L1 norm algorithms in three major categories as, direct descent algorithms, 

simplex type algorithms, and other algorithms which will be discussed in the following sections sequentially. 

5.1 Direct descent algorithms 

The essence of the algorithms which fall within this category is finding a steep path to descend down the 

polyhedron of the L1 norm regression objective function. Although the Laplace's method (explained hereinbefore) is 

a special type of direct descent algorithms; the origin of this procedure in the area of L1 norm can be traced back to 

the algorithms of Edgeworth which were explained in the previous section. 

Rhodes (1930) found Edgeworth's graphical solution laborious; therefore, he suggested an alternative method 

for the general linear model, which may be summarized as follows (see, Farebrother (1987b)). Suppose, we have n 

equations with m<n unknown parameters. To find L1 norm solution of this overdetermined system of equations he 

tries to reduce the m parameter model to a weighted median one parameter problem by solving m-1 of n equations 
(see also Bidabad (1989a,b)). Rhodes (1930) explained his algorithm by an example and did not give any proof for 

convergence. Bruen (1938) reviews the L1 norm regression methods presented by earlier authors. He also compares 

L1, L2, and L  norms regressions. 

Singleton (1940) applied Cauchy's steepest descent method (see, Panik (1976)) for the general linear L1 norm 

regression. In this paper, a geometrical interpretation of gradient on L1 norm polyhedron and some theorems about 

existence and uniqueness of solution and convexity property all were given. This paper has not been clearly written, 

for discussion of the algorithm see Bidabad (1989a,b). 
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Bejar (1956,57) focuses on consideration of residuals rather than on the vector of parameters. He puts forth a 

procedure with the essence of Rhodes (1930). However, he is concerned with two and three parameter linear 

models. 

Karst (1958) gives an expository paper for one and two parameter regression models. In his paper, Karst 

without referring to previous literature actually reaches to the Laplace proposition to solve the one parameter 

restricted linear model, and for the two-parameter model, he proposed an algorithm similar to that of Rhodes (1930). 
His viewpoint is both geometrical and algebraic, and no proof of convergence for his iterative method is offered. 

Sadovski (1974) uses a simple "bubble sort" procedure and implements Karst algorithm in Fortran. Sposito (1976) 

pointed out that Sadovski's program may not converge in general. Sposito and Smith (1976) offered another 

algorithm to remove this problem. Farebrother (1987c) recodes Sadovski's implementation in Pascal language with 

some improvement such as applying "straight insert sort". 

Usow (1967b) presents an algorithm for L1 norm approximation for discrete data and proves that it converges 

in a finite number of steps. A similar algorithm on L1 norm approximation for continuous data is given by Usow 

(1967a). The Usow's algorithm is to descend on the convex polytope from vertex to vertex along connecting edges 

of the polytope in such a way that certain intermediate vertices are by-passed. This descent continues until the 

lowest vertex is reached. (see also, Abdelmalek (1974), Bidabad (1989a,b)). 

Relation of this algorithm with the simplex method has been discussed by Abdelmalek (1974). He shows that 

Usow's algorithm is completely equivalent to a dual simplex algorithm applied to a linear programming model with 
nonnegative bounded variables, and one iteration in the former is equivalent to one or more iterations in the latter. 

Bloomfield and Steiger (1980) devise an efficient algorithm based on the proposition of Usow explained above. 

Sharpe (1971) by applying the L1 norm regression to the portfolio and its rate of return, gives an algorithm 

for the two-parameter linear regression model it must be possible to assign half of the points above and half below 

the regression line (see also Bidabad (1989a,b)). 

Rao and Srinivasan (1972) interpret Sharpe's procedure as the solution of parametric dual linear 

programming formulation of the problem. They give an alternate and about the equally efficient procedure for 

solving the same problem. Brown (1980) gives a distinct but similar approach to those of Edgeworth (1923) and 

Sharpe (1971). He emphasizes on the median properties of the estimator. The similarity comes from the graphical 

approach of the three authors. Kawara (1979) also develops a graphical method for the simple regression model. 

Bartels and Conn and Sinclair (1978) apply the method of Conn (1976) to the L1 norm solution of the 
overdetermined linear system. Their approach is a minimization technique for piecewise differentiable functions 

(see also Bidabad (1989a,b)). This algorithm has also been modified for the case of degeneracy (see also, Bartels 

and Conn and Sinclair (1976)). Bartels and Conn (1977) showed that how L1 norm, restricted L1 norm, L∞ norm 

regressions, and general linear programming can all be easily expressed as a piecewise linear minimization problem. 

By some simplifications, this algorithm corresponds precisely to the algorithm proposed by Bartels and Conn and 

Sinclair (1978). The contribution of this paper is putting a wide class of problems in the mold of two algorithms 

mentioned above. The techniques are easily extended to the models with norm restrictions (see also Bidabad 

(1989a,b)). 

Bloomfield and Steiger (1980) proposed a descent method for the L1 norm multiple regression. Their 

algorithm is also explained in Bloomfield and Steiger (1983). In some steps, this algorithm is related to that of 

Singleton (1940) and Usow (1967b). The basis of this method is to search for a set of m observations which locate 

on the optimal L1 norm regression. This set is found iteratively by successive improvement. In each iteration, one 
point from the current set is identified as a good prospect for deletion. This point is then replaced by the best 

alternative. The novel features of this method are in an efficient procedure for finding the optimal replacement and a 

heuristic method for identifying the point to be deleted from the pivot (see also Bidabad (1989a,b)). In this paper 

relationship of this algorithm to linear programming is also discussed. 

Seneta and Steiger (1984) proposed an algorithm for the L1 norm solution of a slightly overdetermined 

system of equations. Their proposition is based on the above algorithm of Bloomfield and Steiger. It is more 

efficient than the former if m is near n. 

Seneta (1983) reviews the iterative use of weighted median to estimate the parameters vector in the classical 

linear model when the fitting criterion is L1 norm and also Cauchy criterion. 

Wesolowsky (1981) presents an algorithm for multiple L1 norm regression based on the notion of edge 

descent along the polyhedron of the objective function (see also Bidabad (1989a,b)). This algorithm is closely 
related to those of Rhodes (1930) and Bartels and Conn and Sinclair (1978) which explained before. Consider the 

multiple linear regression as before. In this paper, Wesolowsky also discusses the problem of multicolinearity and 

gives an appropriate solution. 
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Josvanger and Sposito (1983) modify Wesolowsky's algorithm for the two-parameter simple linear regression 

model. The modification is an alternative way to order observations instead of sorting all of them to find the 

necessary weighted median value. Suppose the problem has been reduced to a weighted median problem. They 

place smaller values of factors to be sorted with corresponding weights below the current solution point and larger 

or equal values above it, then recheck the inequalities (16) of the weighted median. If the inequalities do not satisfy, 

then an appropriate adjustment is made. In particular, if the right-hand side is overly weighted, then the weight 
corresponding to the smallest sorting factor is transferred to the left-hand side, and the check is made again. A 

computer program for this algorithm is also given by the authors. 

"Generalized gradient" method introduced by Clarke (see, Clarke (1983)) is a general procedure for non-

smooth optimization functions and problems (see, Osborne and Pruess and Womersley (1986)). A subclass of this 

method is called "reduced gradient", explained by Osborne (1985) is a general algorithm which contains linear 

programming, piecewise linear optimization problems, and polyhedral convex function optimization algorithms 

inside. The reduced gradient algorithm is a special case of descent method, which possesses two important 

characteristics. Identify direction and taking a step in this direction to reduce the function value (see also, Anderson 

and Osborne (1975), Osborne and Watson (1985) Osborne (1985,87)). The algorithms of Bartels and Conn and 

Sinclair (1978), Armstrong and Frome and Kung (1979), Bloomfield and Steiger (1980) are all special cases of 

reduced gradient method. 

Imai and Kato and Yamamoto (1987) present a linear time algorithm for computing the two-parameters L1 
norm linear regression by applying the pruning technique. Since the optimal solution in the a0xa1 plane lies at the 

intersection of data lines, so, at each step, a set of data lines which does not determine the optimum solution are 

discarded. In this paper algebraic explanation of the problem is also offered. 

Pilibossian (1987) also gives an algorithm similar to Karst (1958) for the simple two-parameter linear L1 

norm regression. 

Bidabad (1987a,b,88a,b) proposed a descent method for the simple and multiple L1 norm regressions. These 

algorithms, with many improvements discussed by Bidabad (1989a,b). Since the algebraically closed form of the L1 

norm estimator has not been derived yet, he tried to give some insight into this problem by applying a discrete 

differentiation technique to differentiate the L1 norm objective function. This differentiation on discrete domain 

variables accompanying with regular differentiation on variables with continuous domains increases our knowledge 

on the algebraically closed form of the problem. In order to improve the accuracy, speed and generally the efficiency 
of computation of the L1 norm estimator, he proposed four algorithms which two of them are for simple and others 

two are for multiple regression models. By inspecting the properties of proposed algorithms, many characteristics of 

the solution space are clarified. In Bidabad (1989a,b) to find the minimum of the L1 norm objective function of the 

regression, m-1 points on the polyhedron of the objective function are selected, and from this set the mth point is 

found by descending in steepest direction. Delete an appropriate point and enter the last mth point for next 

descending step. The procedure is continued until the global minimum is reached. Although most of the descent 

methods use a similar procedure, the steps are well organized and modified for the special shape of the L1 norm 

objective function. In this paper, the new convergence theorems related to the proposed algorithms are proved, and 

their properties are discussed. 

5.2 Simplex type algorithms 

The essence of linear programming in solving L1 norm problem may be found in the work of Edgeworth 

(1888). Harris (1950) suggested that the L1 norm estimation problem is connected with linear programming. Charnes 

and Cooper and Ferguson (1955) formulated the problem as a linear programming model. This article is the first 

known to use linear programming for this case. Adaptation of linear programming to L1 norm estimation problem is 

shown below, 

min: 1n
T(w+v) 

ß 

s.to: Xß+In(w-v)=y                                                                                                            (17) 

w,v 0 

ß unrestricted in sign 
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Where 1n is a vector of size nx1 of 1's and In is a nth order identity matrix. The vectors v and w are of size nx1 and 

their elements may be interpreted as vertical deviations above and below the fitted regression hyperplane 

respectively. This problem has n equality constraints in m+2n variables. When n is large, this formulation generally 

requires a large amount of storage and computation time. 

Wagner (1959) shows that the formulation of the L1 norm regression may be reduced to m equality constraints linear 

programming problem. Thus, this dual formulation reduces n equations of primal form to m equations of dual form 

and considerably reduces the storage and computation time. 

Fisher (1961) reviews the formulation of the L1 norm estimation in relation to the primal form of linear 

programming. Barrodale and Young (1966) developed a modified simplex algorithm for determining the best fitting 

function to a set of discrete data under the L1 norm criterion. The method is given as Algol codes (for critics see, 

McCormick and Sposito (1975)). Davies (1967) demonstrates the use of the L1 norm regression estimates. 
Rabinowitz (1968) also discusses the application of linear programming in this field. Crocker (1969) cautions 

against using the L1 norm criterion merely to restrain unwanted negative coefficient estimates which occur in the 

least squares regression. Multicolinearity is one of the cases which causes this result. Robers and Ben-Israel (1969) 

by using interval linear programming, proposed an algorithm to solve the L1 norm estimation problem. Rabinowitz 

(1970), Shanno and Weil (1970) discuss some connections between linear programming and the approximation 

problem. Barrodale (1970) summarizes the linear and nonlinear L1 norm curve fitting on both continuous and 

discrete data. Spyropoulos and Kiountouzis and Young (1973) suggest two algorithms for fitting general functions 

and particularly fast algorithm with minimum storage requirements for fitting polynomials based on the algebraic 

properties of linear programming formulation. Robers and Robers (1973) have supplied a special version of the 

general method of Robers and Ben-Israel (1969), which is designed specifically for the L1 norm problem. A Fortran 

code is also provided. 

Barrodale and Roberts (1973) present a modification of the simplex method, which needs a smaller amount 

of storage, and by skipping over simplex vertices is more efficient than the usual simplex procedure. Define the 

vector ß as a difference of two nonnegative vectors c and d; their formulation can be stated as follows, 

min: 1n
T(w+a) 

c,d 

s.to: X(c-d)+In(w-v)=y                                                                                                      (18) 

w,v,c,d 0 

Because of the relationships among variables, the computation can be performed by using only (n+2)x(m+2) 

amount of array storage, including labels for the basic and non-basic vectors. An initial basis is given by w if all yi 

are nonnegative. If a yi is negative, the sign of the corresponding row is changed, and the unit column from the 

corresponding element of v is taken as part of the basis. The algorithm is implemented in two stages. The first stage 

restricts the choice of the pivotal column during the first m iterations to the elements of the vector cj and dj 

recording to the associated maximum nonnegative marginal costs. The vector that leaves the basis causes the 

maximum decrease in the objective function. Thus the pivot element is not necessarily the same as in the usual 

simplex. The second stage involves interchanging nonbasic wi or vi with the basic wi or vi. The basic vectors 

corresponding to cj and dj are not allowed to leave the basis. The algorithm terminates when all marginal costs are 

non-positive (see, Kennedy and Gentle (1980)). Fortran code for this procedure is given by Barrodale and Roberts 

(1974). Peters and Willms (1983) give algorithms accompanying with computer codes for up-and-down dating the 

solution of the problem when a column or row inserted to or deleted from X, or y is changed. These algorithms are 

all based on Barrodale and Roberts (1973,74) procedure. 

Abdelmalek (1974) describes a dual simplex algorithm for the L1 norm problem with no use of artificial 

variables. For this algorithm, the Haar condition (see, Osborne (1985), Moroney (1961)) need not be satisfied 
anymore. This algorithm seemed to be very efficient at the time of publication. An improved dual simplex algorithm 

for L1 norm approximation is proposed by Abdelmalek (1975a). In this algorithm, certain intermediate iterations are 

skipped, and in the case of ill-conditioned problems, the basis matrix can lend itself to triangular factorization and 

thus ensure a stable solution. Abdelmalek (1980a) improves his previous algorithm by using triangular 
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decomposition. A Fortran translation of the algorithm is given by Abdelmalek (1980b). Sposito and McCormick and 

Kennedy (1978) summarize much of the works on L1 norm estimation including problem statement, linear 

programming formulation, efficient computational algorithms, and properties of the estimators. 

Armstrong and Kung (1978) propose an algorithm for the simple two-parameter L1 norm regression. The 

method is a specification of linear programming of Barrodale and Roberts (1973) algorithm. A Fortran code is given 

too. 
Armstrong and Frome and Kung (1979) use LU (Lower-Upper triangular) decomposition of Bartels and 

Golub (1969) in maintaining the current basis on the revised simplex procedure. A Fortran translation is also 

enclosed. Armstrong and Godfrey (1979) show that the primal method of Barrodale and Roberts (1973) and the dual 

method of Abdelmalek (1975) are essentially equivalent. With a given initial basis for the two methods, they show 

that both algorithms will generate corresponding bases at each iteration. The only difference is the choice of initial 

basis and heuristic rules for breaking ties. Armstrong and Kung (1982b) present a dual linear programming 

formulation for the problem. Various basis entry and initialization procedures are considered. It has been shown that 

the dual approach is superior to primal one if a good dual feasible solution is readily available (see also, Steiger 

(1980)). Banks and Taylor (1980) suggest a modification of Barrodale and Roberts (1973) algorithm. The objective 

function is altered to include magnitudes of the elements of both errors and solution vectors. For a general 

discussion on simplex for piecewise linear programming see Fourer (1985a,b) and for a survey of the corresponding 

problem on the L1 norm see Fourer (1986). Narula and Wellington (1987) propose an efficient linear programming 
algorithm to solve both L1 and L∞ norms linear multiple regressions. The algorithm exploits the special structure and 

similarities between the two problems. 

Brennan and Seiford (1987) develop a geometrical interpretation of linear programming in L1 norm 

regression. They give a geometric insight into the solving process in the space of observations. McConnell (1987) 

shows how the method of vanishing Jacobians which has been used to optimize quadratic programming problems 

can also be used to solve the special linear programming problem associated with computing linear discrete L1 norm 

approximation. For the possibility of applying other types of linear programming solutions such as Karmarkar 

solution to L1 norm problem see Meketon (1986). 

5.3 Other algorithms 

This category consists of algorithms which were not classified in the two last sections. 

Rice (1964c) applies the bisection method to L1 norm regression. In this method at each step, the domain of S 

is broken to two segments, and the appropriate segment is selected for the next iteration. The solution is reached 

when the last segment is less than a predetermined small value (see, Bidabad (1989) for discussing the bisection 

method). 

Abdelmalek (1971) develops an algorithm for fitting functions to discrete data points and solving the 

overdetermined system of linear equations. The procedure is based on determining L1 norm solution as the limiting 

case of Lp norm approximation when p tends to one from right in the limit. This technique thus obtains a solution to 

a linear problem by solving a sequence of nonlinear problems. 

Schlossmacher (1973) computed the L1 norm estimates of regression parameters by an iterative weighted 
least squares procedure. Instead of minimizing the sum of absolute deviations, he minimized the sum of weighted 

squared errors with 1/│ui│ as weights. Once the least squares is applied to the problem and residuals are computed. 

The absolute value of the inverse of the residuals are again used as corresponding weights in the next iteration for 

minimizing the sum of weighted squared errors (see also, Holland and Welsh (1977)). Fair (1974) observed that the 
estimated values of ß did not change after the second or third iterations. In cases where any residual is zero, the 

continuation of the procedure is impossible, because the corresponding weight to this residual is infinite. This 

problem is also discussed by Sposito and Kennedy and Gentle (1977), Soliman and Christensen and Rouhi (1988). 

Absolute convergence of this algorithm has not been proved, but a non-convergent experiment has not been 

reported. 

Soliman and Christensen and Rouhi (1988) used left pseudoinverse (see, Dhrymes (1978) for a description of 

this inverse) to solve the general linear L1 norm regression. According to this procedure, one should calculate the 

least squares solution using the left pseudo-inverse or least squares approximation. Calculate the residual vector. 

Select the m observations with the smallest absolute values of the residuals and partition the matrices as the selected 

observations locate on the top and solve ß for the top partitions. Although this procedure is operationally simple, its 

solution is not the same as other exact methods, and no proof is presented to show that the solution is in the 

neighborhood of the exact solution of the L1 norm minimization problem. 
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Application of median polish (see, Tukey (1977)) and n-median polish to L1 norm estimation are discussed 

and developed by Bloomfield and Steiger (1983), Kemperman (1984), Sposito (1987a), Bradu (1987a,b). 

Application of Karmarkar's algorithm for linear programming and its relation to L1 norm is given by Sherali 

and Skarpness and Kim (1987). For using homotopy method in L1 norm, see Garcia and Gould (1983), Schellhorn 

(1987). An algorithm for linear L1 norm approximation for the continuous function is given by Watson (1981), (see 

also, Baboolal and Watson (1981)). 

5.4 Initial value problem 

 It is discussed by many authors on how the algorithms should be started. Selection of initial value is an 

important factor in the execution time of various algorithms. On the other hand, a good starting point leads to the 

solution faster and reduces the number of iterations. There are several papers which consider the problem for the L1 

norm minimization algorithms. Duris and Sreedharan (1968) briefly refer to this problem. McCormick and Sposito 

(1976) used the least squares estimator to construct a starting point for the algorithm of Barrodale and Roberts 

(1973). This initial value reduced the number of iterations in most cases. Sposito and Hand and McCormick (1977) 

show that the total CPU time needed to obtain optimal regression coefficients under the L1 norm can generally be 
reduced if one first computes a near-best L1 norm estimator such as least squares and then solve the modified 

procedure of Barrodale and Roberts (1973). A similar discussion about L∞ norm estimation is given by Hand and 

Sposito (1980). Sklar and Armstrong (1982) demonstrate that utilizing the least squares residuals to provide an 

advanced start for the algorithm of Armstrong and Frome and Kung (1978) results in a significant reduction in 

computational effort. 

5.5 Computer programs and packages 

Although many authors have coded the computer programs for their own algorithms, which were referenced 
before, there are also other packages which solve the L1 norm regression problem and compute the necessary 

statistics. Some of these packages are IMSL (see, Rice (1985)); BLINWDR (see, Dutter (1987)); ROBETH and 

ROBSYS (see, Marazzi (1987), Marazzi and Randriamiharisoa (1985)) and XploRe (see, Hardle (1987)). Since this 

software has its own special characteristics, we do not go through the details of them. The interested reader may 

consult the references. 

5.6 Comparison of the algorithms 

Generally, the comparison of algorithms is not a straightforward task. As it is indicated by Dutter (1977), 

factors such as quality of computer codes and computing environment should be considered. In the case of the L1 
norm algorithms, three specific factors of the number of observations, number of parameters, and the condition of 

data are more important. Kennedy and Gentle and Sposito (1977a,b), and Hoffman and Shier (1980a,b) describe 

methods for generating random test data with known L1 norm solution vectors. Gilsinn et al. (1977) discuss a 

general methodology for comparing the L1 norm algorithms. 

Table 1. Summary of the characteristics of the existing algorithms. 

Ref. Compared with m range n range Time performances 

BCS BR 2-8 201 roughly equal speed 

AFK BR 5-20 100-1500 30%-50% AFK is faster 

A BR 1-11 15-203 nearly equal speed 

BS BR 2-6 100-1800 BS is faster for larger n 

W AFK, AK 2-25 100-1800 W is faster for larger n, smaller m 

SS BS 4-34 10-50 SS is faster for m near n 

B4 AFK, BS, BR 3-10 20-10000 B4 is faster and more accurate; 

AFK and BS failed in large samples 

AK S 2 50-500 AK is faster 

JS AK 2 10-250 JS is faster 

B2 JS 2 20-10000 B2 is faster 

n          number of observations. 

m         number of parameters. 
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BCS    Bartels,Conn,Sinclair (1978). 

BR       Barrodale,Roberts (1973,74). 

AK      Armstrong,Kung (1978). 

S         Sadovski (1974). 

AFK   Armstrong,Frome,Kung (1979). 

A        Abdelmalek (1980a,b). 
BS      Bloomfield,Steiger (1980). 

W       Wesolowsky (1981). 

JS       Josvanger,Sposito (1983). 

SS       Seneta,Steiger (1984). 

B2      Bidabad (1989a,b), algorithm 2. 

B4      Bidabad (1989a,b), algorithm 4. 

 

Kennedy and Gentle (1977) examine the rounding error of L1 norm regression and present two techniques for 

detecting inaccuracies of the computation (see also, Larson and Sameh (1980)). 

Many authors have compared their own algorithms with those already proposed. Table 1 gives a summary of 

the characteristics of the algorithms proposed by different authors. It is important to note that since the computing 

environment and condition of data with respect to the distribution of the regression errors of the presented 
algorithms by table 1 are not the same, definitive conclusion and comparison should not be drawn from this table. 

Armstrong and Frome (1976a) compare the iterative weighted least squares of Schlossmacher (1973) with 

Barrodale and Roberts (1973) algorithm. The result was high superiority of the latter. Anderson and Steiger (1980) 

compare the algorithms of Bloomfield and Steiger (1980), Bartels and Conn and Sinclair (1978) and Barrodale and 

Roberts (1973). It was concluded that as the number of observations n increases the BR locates in a different 

complexity class than BCS and BS. All algorithms are linear in the number of parameters m, and BS is less complex 

than BCS. Complexities of BS and BCS are linear in n. There is a slight tendency for all algorithms to work 

proportionately harder for even m than for odd m. BR and BS had the most difficulty with normal error distribution 

and the least difficulty with Pareto distribution with corresponding Pareto density parameter equal to 1.2. 

 Gentle and Narula and Sposito (1987) perform a complete comparison among some of the L1 norm 

algorithms. They limited this comparison to the codes that are openly available for L1 norm linear regression of 
unconstrained form. Table 2 shows the required array storage and stopping constants of the corresponding 

algorithms and the algorithms of Bidabad (1989a,b). Table 2. The array storage requirement for selected algorithms. 

Table 2. The array storage requirement for selected algorithms. 

Program name Ref. Required array storage Stopping constants 

L1 BR 3n+m(n+5)+4 BIG=1.0E+75 

TOLER=10**(-D+2/3) 

D=No.of decimal digits of accuracy 

L1 A 6n+m(n+3m/2+15/2) PREC=1.0E-6 

ESP=1.0E-4 

L1NORM AFK 6n+m(n+m+5) ACU=1.0E-6 

BEG=1.0E+15 

BLAD1 BS 4n+2m(n+2) ----------------- 

BL1 B4 2n+m(3n+m+2)-2 ----------------- 

LONESL S 4n PREC=1.0E-6 

BIG=1.0E+19 

SIMLP AK 4n ACU=1.0E-6 

BIG=1.0E+19 

DESL1 JS 5n TOL=1.0E-6 

BL1S B2 5n ----------------- 

See table 1 for abbreviations. 

Sources: Gentle, Narula, Sposito (1987), Bidabad (1989a,b). 

They concluded that the BS program performs quite well on smaller problems, but in larger cases, because of 

accumulated round-off error, it fails to produce correct answers. Increasing the precision of the coded program to 
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avoid rounding error increases the execution time, so it is not clear what would happen to the relative efficiency of 

BS after modification. 

The Wesolowsky program was not usable and deleted in their study. Because of the superiority of AFK to 

BR and AK to S, which had been indicated in previous studies, BR and S algorithm did not enter in their study. 

Gentle and Sposito and Narula (1988) also compare the algorithms for unconstrained L1 norm simple linear 

regression. This investigation is essentially an extraction of Gentle and Narula and Sposito (1987). The attained 
results are completely similar. 

Bidabad (1989a,b) compare the algorithm B2 with JS and B4 with the algorithms of AFK, BS, and BR. He 

concludes that B2 is faster than JS and B4 is faster for smaller m and accurate for larger n. He also observed the 

failure of AFK and BS for larger problems. 

5.7 Nonlinear form computational methods 

 Suppose again y, X, u and ß are defined as before. In nonlinear L1 norm regression, the problem is to 

estimate ß vector in the nonlinear model, 

yi = fi(xi,ß) + ui     i=1,...,n; n m                                                                                        (19) 

Where fi is the response function, and xi is the ith row of X. L1 norm regression parameters are derived by 

minimizing the following sum: 

 n 

min:  │yi - fi(xi,ß)│                                                                                                         (20) 

ß  i=1 

The function (20) can be reformulated as a nonlinear programming problem as, 

 n 

min:  wi 

ß  i=1 

s.to: yi - fi(xi,ß) - wi  0 

-yi + fi(xi,ß) - wi  0                                                                                              (21) 

wi  0 

i=1,...,n 

Over the last three decades, numerous algorithms have been proposed for solving the nonlinear L1 norm 
regression problem. These methods can be classified into the following three main categories (see, Gonin and 

Money (1987b); for another categorization see Watson (1986), McLean and Watson (1980)). 

The first category consists of the methods using only the first order derivative. In these algorithms, the 

original nonlinear problem is reduced to a sequence of linear L1 norm problems, which each of them can be solved 

efficiently by standard linear programming procedures. These methods are of the Gauss-Newton type. The main 

algorithms which fall into this category have been presented by authors like Osborne and Watson (1971), Anderson 

and Osborne (1977a,b), Shrager and Hill (1980), McLean and Watson (1980), Jittorntrum and Osborne (1980), 

Osborne (1980), Watson (1980,84a), Bartels and Conn (1982), Hald and Madsen (1985). 

The second category consists of methods which by using a second-order derivative, transform the original 

problem into a sequence of unconstrained minimization problems. The non-differentiability of the objective function 

is then overcome. This procedure is known as the penalty function method of nonlinear programming. The 

contributors are El-attar and Vidyasagar and Dutta (1979), Fletcher (1981,84), Tishler and Zang (1982), Conn 
(1984), Conn and Gould (1987). 

In the last category, the objective function is linearized but quadratic approximations are incorporated to take 

curvature effects into account (see, Murray and Overton (1981), Overton (1982), Bartels and Conn (1982)). 
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 Other characteristics of nonlinear L1 norm problem are discussed by Rice (1964a,b), Osborne and Watson 

(1978), Charalambous (1979), Glashoff and Schultz (1979), Hald (1981a,b), Wagner (1982), Watson (1982,87), 

Powell and Yuan (1984). 

5.8 Lp norm computation 

Suppose our linear regression model of the form discussed before. The Lp norm estimation of ß may be 

found by minimizing the sum of the pth power of the absolute values of the errors. That is, 

 n         m 

min:  │yi -  ßjxij│
p                                                                                                        (22) 

ß  i=1       j=1 

The above problem can be reformulated as a mathematical programming problem. Rewrite the error vector as the 

difference of two nonnegative vectors w and v, which present positive and negative deviations respectively. That is 

u=w-v; w,v 0. The Lp norm approximation problem reduces as follows (see, Kiountouzis (1972)), 

 n 

min:  (wi
p+vi

p) 

ß  i=1 

m 

s.to: wi - vi +  ßjxij = yi 

 j=1                                                                                                                 (23) 

wi,vi  0 

ßj unrestricted in sign 

i=1,...,n; j=1,...,m 

It should be noted that this formulation is extremely flexible as it allows that any other constraint to be added (see, 

Money and Affleck-Graves and Hart (1978)). Another nice specification is that we can change the model to 

nonlinear form by removing the summation term in the first n constraints and inserting fi(xi,ß) instead. That is, 

 n 

min:  (wi
p + vi

p) 

ß  i=1 

s.to: wi - vi + fi(xi,ß) = yi                                                                                                   (24) 

wi,vi  0 

ßj unrestricted in sign 

i=1,...,n; j=1,...,m 

 

The resultant is the formulation of nonlinear Lp norm estimation problem. 

For general Lp norm regression, there exist various computational methods for linear as well as nonlinear 

models (for details of the discussion, interested readers may see, Descloux (1963), Rice (1964,69), Barrodale and 

Young (1966), Sreedharan (1969,71), Ekblom and Henriksson (1969), Karlovitz (1970a,b), Barrodale and Roberts 
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(1970), Barrodale and Roberts and Hunt (1970), Fletcher and Grant and Hebden (1971,74b), Kiountouzis (1972), 

Forsythe (1972), Kahng (1972), Ekblom (1973a,b), Anton and Duris (1973), Watson (1973,77,78,84b,85a), Shisha 

(1974), Merle and Spath (1974), Oettli (1975), Rey (1975), Mond and Schechter (1976), Borowsky (1976), Shier 

and Witzgall (1978), Kennedy and Gentle (1978), Wolfe (1979), Porter and Winstanley (1979), Barr and Affleck-

Graves and Money and Hart (1980a), Harter (1981), Madsen (1985), Gonin and du Toit (1987), Fichet (1987b)). 

In the case of L∞ norm solution of overdetermined system of equations, there are similar methods as well (for 
more information, interested readers may see the following selected articles and also their references, Kelley (1958), 

Goldstein and Cheney (1958), Cheney and Goldstein (1958), Stiefel (1960), Veidinger (1960), Valentine and Van 

Dine (1963), Aoki (1965), Osborne and Watson (1967), Bartels and Golub (1968a,b), Gustafson and Kortanek and 

Rom (1970), Barrodale and Powell and Roberts (1972), Cline (1972,76), Duris and Temple (1973), Watson (1973), 

Barrodale and Phillips (1974,75), Boggs (1974), Fletcher and Grant and Hebden (1974a), Madsen (1975), 

Abdelmalek (1975b,76,77a,b), Conn (1975), Coleman (1978), Charalambous and Conn (1978), Bartels and Conn 

and Charalambous (1978), Armstrong and Kung (1979), Klingman and Mote (1982), Bartels and Conn and Li 

(1987), Brannigan and Gustafson (1987)). 

6. Simultaneous equations system 

The L1 norm estimation has been extensively studied for single equation regression model, and its 

properties are well recognized. But despite the wide variety of econometric applications of L1 norm estimation to 

simultaneous equation systems, there have been only a few investigators in this area which their works are 

summarized in this section. Suppose the following equation as the first equation of a structural system, 

                                                       ┌  ┐ 

y = Y  + X1ß + u = [Y|X1]│---│ + u ≡ Z  + u                                                                 (25) 

                                                       └ ß ┘ 

Where y is a vector of dependent endogenous, Y, matrix of independent endogenous, X1, matrix of exogenous 

variables;  and ß are vectors of regression parameters and u is random error vector. The reduced form for Y is 

given by, 

Y = X  + v                                                                                                                       (26) 

Direct and indirect least absolute deviations (DLAD, IDLAD) analogs of direct and indirect least squares (DLS, 

IDLS) may be applied to the systems (25) and (26) respectively. The L1 norm objective function analog of two-stage 

least squares (2SLS) for estimation of  may be defined as, 

 n 

min:  │yi - Pi
TZ │                                                                                                         (27) 

  i=1 

Where yi is the ith element of y, Pi
T is the ith row of P=(XTX)-1XT (see, Fair (1974)). Amemiya (1982) by 

comparing the problem (27) with Theil's interpretation of 2SLS, 

 n 

min:  (yi - Pi
TZ )2                                                                                                          (28) 

  i=1 

and interpretation of 2SLS as the instrumental variables estimator, namely, the minimization of, 

      n 

min:  (Pi
Ty - Pi

TZ )2                                                                                                     (29) 
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  i=1 

defines two-stage least absolute deviations (2SLAD) as 

 n 

min:  │Pi
Ty - Pi

TZ │                                                                                                    (30) 

  i=1 

Amemiya (1982) combines the two ideas and proposes 2SLAD as a class of estimators obtained by minimizing, 

 n  

min:  │qfi + (1-q)Pi
Ty - Pi

TZ │                                                                                     (31) 

  i=1 

Where q is a parameter to be determined by the researcher. When q=0, problem (31) is equivalent to (30) and yields 

the estimator which is asymptotically equivalent to 2SLS. When q=1 then (31) is equivalent to (27). For any value 

of q [0, ) Amemiya (1982) proves the strong consistency of 2SLAD and gives its asymptotic variance under three 

different cases of normal, partially normal and non normal distribution of u and v. Powell (1983) demonstrates the 

asymptotic normality of Amemiya (1982) proposed estimators for more general distributions of error terms. 

Amemiya (1982) also proposes another alternative LAD analog of 2SLS. Once IDLAD is applied to each 

equation of reduced form and ^ is computed. Then by minimizing the following expression, 

 n 

min:  │yi -Xi
T ^  - X1i

Tß│                                                                                          (32) 

ß  i=1 

^ and ß^ are derived. He calls this estimator double two-stage least absolute deviations (D2SLAD). A similar 

discussion for different values of q has also been done. Powell (1983) shows an asymptotic equivalence proposition 

for the sub-class of D2SLAD estimators. This result is analogous to the finite sample equivalence of Theil's 

interpretation of 2SLS, and its instrumental variable interpretation. 

Glahe and Hunt (1970) as pioneers of introducing L1 norm in the simultaneous system of equations, compare 

small sample properties of least absolutes and least squares estimators for an overidentified simultaneous system of 

two equations via Monte Carlo experiments. Estimators, where used, are DLAD, DLS, IDLAD, IDLS, 2SLAD, and 

2SLS. All comparisons were made for all three pairs of direct, indirect, and two-stage least absolute and least 

squares estimators for different sample sizes of ten and twenty with considering various cases of multicolinearity, 
heteroskedasticity, and misspecification. They concluded that the L1 norm estimators should prove equal or superior 

to the L2 norm estimators for models using a structure similar to that of their study, with very small sample sizes and 

randomly distributed errors. 

The same structure is used by Hunt and Dowling and Glahe (1974) with Laplace and normal error 

distributions. The estimators in their study are DLAD, DLS, 2SLAD, and 2SLS. They concluded that the L1 norm 

estimators provided 100% of the best results in the case of Laplace distribution, and 37.5% of the best results in the 

case of a normal distribution of errors. 

Nyquist and Westlund (1977) perform a similar study with an overidentified three equations simultaneous 

system with error terms obeying symmetric stable distributions. The estimators used in this study were similar to 

those of Glahe and Hunt (1970) mentioned above. They concluded that with normal distribution, L2 norm estimators 

are favorable. In nonnormal case, L1 norm estimators tend to perform better as the degree of nonnormality increases. 

When sample size increases, the relative performance of 2SLAD to DLS is increased too. In the normal distribution 
case, 2SLS is the best, and for nonnormal distributions, 2SLAD is the leading alternative closely followed by 

IDLAD, and for extremely nonnormal cases, IDLAD seems to be more robust than 2SLAD. 
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7. Statistical aspects 

Since the L1 norm criterion has discovered many interesting extension in statistics; this section has a glance at 

some of its features on the various fields of statistics. 

7.1 Sampling distribution 

Ashar and Wallace (1963), Rice and White (1964), Meyer and Glauber (1964), Glahe and Hunt (1970), Fama 

and Roll (1971), Smith and Hall (1972), Kiountouzis (1973), Brecht (1976), Ramsay (1977), Hill and Holland 
(1977), Rosenberg and Carlson (1977), Pfaffenberger and Dinkel (1978) have examined small sample properties of 

L1 norm fitting via Monte Carlo method in different conditions. The relative efficiency of this estimator to least 

squares occurs if errors distribution has big tails. 

Wilson (1978) concludes that L1 norm estimator is 80% as efficient as least squares when errors follow 

contaminated normal distribution. When outliers are present, the L1 norm estimator becomes more efficient. His 

approach is Monte Carlo too, and a wide variety of experiments are examined. 

Cogger (1979) performed ex-post comparisons between L1 and L2 norms forecasts from Box-Jenkins 

autoregressive time series models. The comparisons indicated that L1 norm approaches to the estimation of ARIMA 

(integrated autoregression moving average) models of time series data should receive further attention in practice. 

For multivariate regression with a symmetric disturbance term distribution, Rosenberg and Carlson (1973) 

showed that the error in the L1 norm estimation is approximately, normally distributed with mean zero and variance-

covariance matrix ²(XTX)-1, where, ²/n is the variance of the median of errors (see also, Sposito and Tvejte 
(1984), Ronner (1984)). They concluded that the L1 norm estimates have smaller variance than least squares in 

regression with high kurtosis error distribution (see also, Bloomfield and Steiger (1983)). 

Sielken and Hartley (1973), Farebrother (1985) have shown that when the errors follow a symmetric 
distribution, and the L1 norm estimates may not be unique, the problem may be formulated in such a way as to yield 

unbiased estimators. A similar discussion for general Lp norm may be found in Sposito (1982). 

Bassett and Koenker (1978) showed that the L1 norm estimates of regression parameters in general linear 

model are consistent and asymptotically Gaussian with covariance matrix ²(XTX)-1, where ²/n is the asymptotic 
variance of the sample median from random samples of size n taken from the error distribution (see, Bassett and 

Koenker (1982), Koenker and Bassett (1984), Bloomfield and Steiger (1983), Oberhofer (1982), Wu (1988). A 

simple approximation method for computing the bias and skewness of the L1 norm estimates is given by Withers 

(1987) which shows that bias and skewness of ß^ are proportional to the 3rd moments of independent variables. The 

moment problem in the L1 norm is discussed by Hobby and Rice (1965). 

Dupacova (1987a,b) used the tools of nondifferentiable calculus and epi-convergence to find the asymptotic 

properties of restricted L1 norm estimates. Asymptotic interesting properties of Boscovich's estimator, which is L1 

norm minimization of errors subject to zero mean of residuals constraint may be found in Koenker and Bassett 

(1985). L1 norm fit for censored regression (or censored "Tobit") models has been introduced by Powell (1984,86). 

Paarsch (1984) by Monte Carlo experiments showed that the Powell estimator is neither accurate nor stable. 

Gross and Steiger (1979) used an L1 norm analog of L2 norm estimator for the parameters of stationary, finite 

order autoregressions. This estimator has been shown to be strongly consistent. Their evidence is based on Monte 

Carlo experiments (see also, Bloomfield and Steiger (1983) for more discussions). 

7.2 Statistical inference 

The asymptotic distribution of the three L1 norm statistics (Wald, likelihood ratio, and Lagrange multiplier 

tests) of linear hypothesis for the general linear model have been discussed in Koenker and Bassett (1982a). They 

derived the asymptotic distribution for a large class of distributions. It has been shown that these tests under mild 

regularity conditions on design and error distribution have the same limiting chi-square behavior. Comparison of 

these tests based on Monte Carlo experiments is given in Koenker (1987). Since the L1 norm estimator 
asymptotically follows a normal distribution, Stangenhaus and Narula (1987) by using Monte Carlo method 

determined the sample size at which normal distribution approximation can be used to construct the confidence 

intervals and test of hypothesis on the parameters of the L1 norm regression. Comparison methods for studentizing 

the sample median which can be extended to L1 norm regression is discussed by McKean and Sheather (1984); and 

accordingly, testing and confidence intervals are compared by Sheather and McKean (1987). 
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Two coefficients of determination for L1 norm regression are given by McKean and Sievers (1987). A class 

of tests for heteroskedasticity based on the regression quantiles is given in Koenker and Bassett (1982b). More 

recent works on L1 norm statistical inference and analysis of variance may be found in Armstrong et al. (1977), 

Siegel (1983) Sheather (1986), McKean and Shrader (1987), Shrader and McKean (1987), Stangenhaus (1987), 

Brown and Hettmansperger (1987), Tracy and Khan (1987), Vajda (1987), Sheather (1987), Fedorov (1987). For 

other characterization see, Fichet (1987a), LeCalve (1987). 

7.3 Multivariate statistics 

In the usual clustering method, Euclidian metric or distance as an appropriate real-valued function for 

constructing dissimilarity criterion is used (see also, Bidabad (1983a)). Spath (1976) used the L1 metric as a criterion 

for the clustering problem. More modification and extension may be found in Spath (1987). Kaufman and 

Rousseeuw (1987) introduced an L1 norm type alternative approach, used in the k-medoid method, that minimizes 

the average dissimilarity of all objects of the data set to the nearest medoid. Trauwaert (1987) and Jajuga (1987) 

applied the L1 metric in fuzzy clustering method of ISODATA (Iterative Self Organizing Data Analysis Technique 

(A)). Trauwaert (1987) showed that in the presence of outliers or data errors, the L1 metric has superiority over L2 
distance. 

An L1 norm similar version of multidimensional scaling is presented by Heiser (1988) (see also, Critchley 

(1980)) and of correspondence analysis by Heiser (1987). Robust Lp norm discrimination analysis is discussed by 

Haussler (1984) and Watson (1985a). L1 norm estimation of principal components considered by GaLpin and 

Hawkins (1987). 

7.4 Nonparametric density estimation 

L1 norm has also been used in nonparametric statistics and density estimation. The procedure of density 
estimation is done via the Parzen kernel function. Abou-Jaoude (1976a,b,c), Devroye and Wagner (1979,80) give 

the conditions for the L1 norm convergence of kernel density estimates. Devroye (1983,85) gives the complete 

characterization of the L1 norm consistency of Parzen-Rosenblatt density estimate. Devroye concludes that all types 

of L1 norm consistencies are equivalent. Gyorfi (1987) proves the L1 norm consistency of kernel and histogram 

density estimates for uniformly and strong mixing samples. Devroye and Gyorfi (1985) give a complete explanation 

of the L1 norm nonparametric density estimation. The central limit theorems of Lp norms for kernel estimators of 

density and their asymptotic normality in different conditions of unweighted and weighted Lp norm of naive 

estimators, and under random censorship are discussed in Csorgo and Horvath (1987,88), Horvath (1987), Csorgo 

and Gombay and Horvath (1987). Bandwidth selection in nonparametric regression estimation is shown by Marron 

(1987). Via an example, he concludes that it is a smoothing problem. Welsh (1987) considers simple L1 norm kernel 

estimator of the sparsity function and investigates its asymptotic properties. L1 and L2 norms cross-validation criteria 

are studied for a wide class of kernel estimators by Rossi and Brunk (1987,88). Gyorfi and Van der Meulen (1987) 
investigate the density- free convergence properties of various estimators of Shannon entropy and prove their L1 

norm consistency. Munoz Perez and Fernandez Palacin (1987) consider the estimating of the quantile function by 

using Bernstein polynomials and examine its large sample behavior in the L1 norm. For comparison of the L1 and L2 

norms estimators of Weibull parameters, see Lawrence and Shier (1981) and for a nonparametric approach on 

quantile regression, see Lejeune and Sarda (1988). 

7.5 Robust statistics 

One of the most important properties of the L1 norm methods is resistivity to outliers or wild points. This 

property makes it one of the most important techniques of robust statistics. Huber (1987) pointed out that the L1 
norm method serves in two main areas of robust estimation. Sample median plays an important role in robust 

statistics. The sample median is the simplest example of an estimate derived by minimizing the L1 norm of 

deviations. Thus, the L1 norm minimizes the maximum asymptotic bias that can be caused by asymmetric 

contamination. Therefore, it is the robust estimate of choice in cases where it is more important to control bias than 

the variance of the estimate. Next, the L1 norm method is the simplest existing high-breakdown estimator. Thus it 

can be a good starting point for iterative estimators which give nonsense solution if they started with a bad initial 

point and since it is resistant to outliers, may be used as an starting point for trimming the wild points (see also, 

Taylor (1974), Holland and Welsch (1977), Harvey (1977,78), Armstrong and Frome and Sklar (1980), Antoch et al 

(1986), Antoch (1987), Portnoy (1987), Bassett (1988b)). This technique for polynomial regression with a test about 

the degree of the polynomial and for regression quantiles is considered in Jureckova (1983,84), Jureckova and Sen 

(1984). The same thing for nonlinear regression is devised by Prochazka (1988). Ronchetti (1987) reviews the basic 
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concepts of robust statistics based on influence function and also in relation with L1 norm (see also GaLpin (1986)). 

For computational algorithms in bounded influence regression, see Marazzi (1988). Ekblom (1974) discusses the 

statistical goodness of different methods when applied to regression problem via Monte Carlo experiments, and in 

Ekblom (1987) he shows the relationship of L1 norm estimate as limiting case of an Lp norm or Huber estimates. 

Haussler (1984) and Watson (1985a) considered the robust Lp norm discrimination analysis problem. Robust 

estimates of principal components (see, Bidabad (1983c)) based on the L1 norm formulation are discussed by GaLpin 
and Hawkins (1987). The asymptotic distributional risk properties of pre-test and shrinkage L1 norm estimators are 

considered by Saleh and Sen (1987). L1 norm estimator is also a member of M and R estimators (see, Bloomfield 

and Steiger (1983) for more discussions). 

8. Application 

L1 norm method has been extensively developed in various fields of sciences and work as strong analytical 

tools in analyzing human and natural phenomena. Many branches of sciences in applied mathematics, statistics, and 

data analysis like econometrics, biometrics, psychometrics, sociometrics, technometrics, operation research, 

management, physic, chemistry, astronomy, medicine, industry, engineering, geography and so forth are heavily 
dependent to this method. 

The assumption of normally distributed errors does not always hold for economic variables as well as other 

data and variables, and so we are not confronted with finite variance anywhere. An infinite variance means thick tail 

errors distribution with a lot of outliers. Since the least squares gives a lot of weights to outliers, it becomes 

extremely sample dependent. Thus, in this case, least squares becomes a poor estimator. Of course, the observed 

distributions of economic or social variables will never display infinite variances. However, as discussed by 

Mandelbrot (1961,63) and hereinbefore, the important issue is not that the second moment of the distribution is 

actually infinite, but the interdecile range in relation to the interquartile range is sufficiently large that one is justified 

in acting as though the variance is infinite. Thus, in this context, an estimator which gives relatively little weight to 

outliers, such as L1 norm estimator is clearly preferred. 

Distribution of personal income has been known to have this characteristic since the time of Pareto -1896. 
Ganger and Orr (1972) give some evidence on time series characteristics of economic variables which have this 

property. Many other economic variables such as security returns, speculative prices, stock and commodity prices, 

employment, asset sizes of business firms, demand equations, interest rate, treasury cash flows, insurance and price 

expectations all fall in the category of infinite variance error distribution (see, Goldfeld and Quandt (1981), Nyquist 

and Westlund (1977), Fama (1965), Sharpe (1971)). 

Arrow and Hoffenberg (1959) used the L1 norm in the context of interindustry demand. Meyer and Glauber 

(1964) compare L1 and L2 norms directly. They estimated their investment models on a sample by both estimators 

and then examined them by forecasting ex-post sample. They concluded that, with very few exceptions, the L1 norm 

estimation outperformed the L2 norm estimators, even with criteria such as the sum of the squared forecast errors 

which least squares is ordinarily thought to be minimal. Sharpe (1971) compares L1 and L2 norms estimators for 

securities and portfolios. A similar discussion has been given by Cornell and Dietrich (1978) on capital budgeting. 

Affleck-Graves and Money and Carter ( ) did the same research by applying Lp norm and with emphasis on factors 
affecting the estimation of coefficients of an individual security model. Kaergard (1987) compares L1, L2, and L∞ 

norms estimators for Danish investments via their power to predict the even years from estimation over odd years 

for a long period. Hattenschwiler (1988) uses goal programming technique in relation with L1 norm smoothing 

functions on several large disaggregate linear programming models for Switzerland food security policy (see, 

Bidabad (1984a) for a description of goal programming relevance). Other applications of the L1 norm smoothing 

functions on the models for planning alimentary self-sufficiency, food rationing, and flux- and balancing model for 

feedingstuffs are referenced by Hattenschwiler (1988). 

Wilson (1979) used L1 norm regression for statistical cost estimation in a transport context. Chisman (1966) 

used L1 norm estimator to determine standard times for jobs in which work-elements are essentially the same for all 

jobs except that the quality of each type of the work-element used may vary among jobs. Frome and Armstrong 

(1977) refer to this estimator for estimating the trend-cycle component of an economic time series. 
Charnes and Cooper and Ferguson (1955) give the optimal estimation of executive compensation of 

employees by solving the L1 norm problem via the technique of linear programming. Application of the L1 norm in 

location theory is of special interest; because by this metric the rectangular distance of two points in two 

dimensional Cartesian coordinates can be considered very well (see, Cabot et al (1970), Wesolowsky and Love 

(1971,72), Drezner and Wesolowsky (1978), Ratliff and Picard (1978), Morris and Verdini (1979), Megiddo and 

Tamir (1983), Calamai and Conn (1987); see also, the bibliography of Domschke and Drext (1984)). Farebrother 
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(1987a) applies the L1 norm to committee decision theory. Mitchell (1987) uses the L1 norm to find the shortest path 

for a robot to move among obstacles. L1 norm has been applied to chemistry by Fausett and Weber (1978); in 

geophysics by Dougherty and Smith (1966), Claerbout and Muir (1973), Taylor and Banks and McCoy (1979); in 

astronomy by Rousseeuw (1987), in physical process and pharmacokinetic by Frome and Yakatan (1980), Gonin 

and Money (1987a). For a mechanical representation of L1 norm, see, Farebrother (1987d). Application of the L1 

norm in power systems for static state estimation is given by Kotiuga and Vidyasagar (1982). Anderson (1965) 
suggests using L1 norm estimation in order to assure the nonnegative coefficient in linear time equations. For 

application on the data of orbital measurement, see Mudrov et al. (1968). 

9. Other variants 

Narula and Wellington (1977a) propose the minimization of the sum of weighted absolute errors. That is, 

minimizing the expression wi│ui│. An algorithm for this problem is introduced. Narula and Wellington (1977b) 

proposed a special case of the above formulation by the name, "minimum sum of relative errors". In this problem, 

wi are set equal to 1/│yi│ (see also comment of Steiger and Bloomfield (1980)). 

Narula and Wellington (1977c) give an algorithm for L1 norm regression when the model is restricted to pass 

through the means of each of the variables (see, Farebrother (1987c) for a remark). In the case of restricted L1 norm 

estimation some algorithms presented by Young (1971), Armstrong and Hultz (1977), Barrodale and Roberts 
(1977,78), Bartels and Conn (1980a,b), Armstrong and Kung (1980). An algorithm for L1 norm regression with 

dummy variables is given by Armstrong and Frome (1977). Womersley (1986) introduces a reduced gradient 

algorithm for censored linear L1 norm regression. 

In the context of stepwise regression and variable selection, there are also special algorithms for the case of 

L1 norm (see, Roodman (1974), Gentle and Hansen (1977), Narula and Wellington (1979,83), Wellington and 

Narula (1981), Dinkel and Pfaffenberger (1981), Armstrong and Kung (1982a)). 

An algorithm for regression quantiles is given by Narula and Wellington (1984). Computation of best one-

sided L1 norm regression that is finding an approximation function which is everywhere below or above the function 

is given by Lewis (1970). For numerical techniques to find estimates which minimize the upper bound of absolute 

deviations, see Gaivoronski (1987). 

Arthanari and Dodge (1981) proposed a convex combination of L1 and L2 norms objective functions to find 
new estimator for the linear regression model. Dodge (1984) extends this procedure to a convex combination of 

Huber M-estimator and L1 norm estimator objective functions. Dodge and Jureckova (1987) showed that the 

pertaining convex combination of L1 and L2 norms estimates could be adapted in such a way that it minimizes a 

consistent estimator of the asymptotic variance of the newly produced estimator. In Dodge and Jureckova (1988) it 

is discussed that the adaptive combination of M-estimator and L1 norm estimator could be selected in an optimal 

way to achieve the minimum possible asymptotic variance. 

Instead of minimizing the absolute deviations, Nyquist (1988) minimized absolute orthogonal deviations 

from the regression line. In this paper, computational aspects of this estimator are considered, and a connection to 

the projection pursuit approach to the estimation of multivariate dispersion is pointed out. Spath and Watson (1987) 

also introduce orthogonal linear L1 norm approximation method. Application of orthogonal distance criterion for L2 

and general Lp norms may be found in Spath (1982,86b), Watson (1982b), Wulff (1983). 

Rousseeuw (1984) proposes a new method of estimation called by "least median of squares" regression. This 

estimator is derived by minimizing the expression, med(ui2) for ß. The resulting estimator can resist the effect of 

nearly 50% of contamination in the data. For an applied book on this topic, see Rousseeuw and Leroy (1987). 

Computational algorithms of this estimator may be found in Souvaine and Steele (1987), Steele and Steiger (1986). 

When the number of observations in comparison with the number of unknowns is large, it ought to be better 
to split the observations into some unknown clusters and look for corresponding regression vectors such that the 

average sum of the Lp norm of the residual vector attains a minimum. This combination of clustering and regression 

is called clusterwise regression. A case study and numerical comparison for clusterwise linear L1 and L2 norms 

regressions are given by Spath (1986a). For clusterwise linear L1 norm regression algorithms see Spath (1986c), 

Meier (1987), and for the presentation of clusterwise regression, see Spath (1985,87). 

Application of the L1 norm to one and two-way tables is given by Armstrong and Frome (1976b,79), Buckley 

and Kvanli (1981) (see also, Bloomfield and Steiger (1983) for general discussions). 

There are other applications of L1 norm in U-statistics by Chun (1987), Bayesian approach by Militky and 

Cap (1987), isotonic regression by Menendez and Salvador (1987), sample allocation by Melaku and Sadasivan 

(1987) and method of averages by Kveton (1987). 
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