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Abstract 
Concurrency control mechanisms including the wait, time-stamp and rollback mechanisms have been briefly discussed. The 
concepts of validation in optimistic approach are summarized in a detailed view. Various algorithms have been discussed regarding 
the degree of concurrency and classes of serializability. Practical questions relating arrival rate of transactions have been presented. 
Performance evaluation of concurrency control algorithms including degree of concurrency and system behavior have been briefly 
conceptualized. At last, ideas like multidimensional timestamps, relaxation of two-phase locking, system defined prewrites, flexible 
transactions and adaptability for increasing concurrency have been summarized. 
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1. Introduction 
Database systems are important for managing the data efficiently and allowing users to perform multiple tasks on it with the ease. 
From space station mechanism to credit card transactions, from railway station to telecommunications phonebook at our home – 
everywhere database is used. A database state which are the values of the database objects representing real-world entity is changed 
by the execution of a user transaction. In a distributed database system, the concurrency control problem occurs when several users 
access multiple databases on multiple sites. Correctness of the database is maintained by a scheduler that keeps an eye on the system 
and control the concurrent accesses. According to (Bhargava, 1983) database integrity and serializability measures the correctness 
of a database. A database is considered to be correct if a set of constraints (predicates or rules) are satisfied. Serializability ensures 
that a schedule for executing concurrent transactions is equivalent to one that executes the transactions serially in some order. It 
assumes that all accesses to the database are done using read and write operations. In this paper, we include some ideas that have 
been used for designing concurrency control algorithms and evaluated these algorithm’s performance. Finally, we have taken into 
account some fact for increasing the degree of concurrency. 
 
2. Concurrency Control Approaches and Algorithms 
Our main point of focus is to process conflicting transactions correctly. Each transaction has a read and write set. Two transactions 
are said to be in conflictive they are different transactions; they are on the different set (one is read set and another is writing set) 
and/or they are on the same set where both of them are write sets. This concept is illustrated in Figure-1. 
 

 
 

Figure 1. Types of conflicts for two transactions. 
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We say that the read set of T1 conflicts with the write set of T2 if read set S(R1) and write set S(W2) have some 
database entities (or items) in common. This shown by th diagonal edge in the figure. Similarly, if S(R2) and S(W1) have some 
database items in common, we draw the other diagonal edge. If S(W1) and S(W2) have some database items in common, we say 
that the write set of T1 conflicts with the write set of T2. It is shown by the horizontal edge at the bottom of the figure. As read 
actions do not change the values of the database entities, it is not a matter of concern about the confliction between the read sets 
of the two transactions. It needs to be pointed that if both transactions T1 and T2are executing at the same time, only then it can 
conflict. For example, if T2 was submitted to the system afterT1 has finished, they will not be in conflict even if their read and 
write sets intersect with each other. 
 
Generic Approaches to Synchronization 
In order to design concurrency control algorithms, basically there three generic approaches as follows: 

▪ Wait: When two transactions conflict, one transaction must wait until another transaction is finished 
▪ Timestamp: In this approach, a unique timestamp is assigned to every transaction by the system. Timestamp determines 

the order in which transactions will be executed.  Conflicting actions of two transactions are processed in timestamp 
order. The time stamp can be assigned in the beginning, middle or at the end of the execution of a transaction. 

▪ Rollback: If two transactions conflict with each other, some actions of one transaction are rolled back or it is restarted. 
This approach is also called optimistic because it is expected that conflicts are such that only a few transactions would 
roll back. 

In the following section, we will discuss each of these approaches in detail and describe the concurrency control algorithms 
that are based on them. 
 
2.1 Algorithms Based on Wait Mechanism 
When two transactions conflict with each other, it can be solved by making one transaction wait until the other transaction releases 
the common entities. The system can use locking technique on the database entities in order to implement wait mechanism. The 
system can lock the entity as long as the operation continues and then can release the lock. When the lock has been given to some 
transaction, the requesting transaction must wait. Based on whether the transaction wants to do a read operation or a write 
operation, there are two types of locks that can be used to reduce the waiting time on an entity: 

▪ Read lock: The transaction locks the entity in a shared mode. Any other transaction waiting to read the same entity can 
also obtain a read lock. 

▪ Write lock: The transaction locks the entity in an exclusive mode. If one transaction wants to write on an entity, no 
other transaction may get either a read lock ora write lock. 

When we say lock, it means either read lock or a write lock. When a transaction has completed operations on an entity, the 
transaction can perform an unlock operation. After an unlock operation, either type of lock is released, and the entity is made 
available to other transactions that may be waiting. An important point is that lock and unlock operations can be performed by 
the user or be transparent to the transaction. In the latter case, it is the responsibility of the system to correctly perform locking 
and unlocking operations for each transaction. 

Two new problems arise due to locking an entity. They Caerlaverock and deadlock. Live lock occurs when a transaction 
repeatedly fails to obtain a lock. Deadlock occurs when various transactions simultaneously tries to lock on several entities and as 
a result, each transaction gets a lock on a different entity and waits for the other transactions to release the lock on the entities that 
they have succeeded in obtaining. The road to solution of the problem due to deadlock can be achieved by the following approaches 

▪ Each transaction has to lock all entities at once. If some locks are held by some other transaction, then the transaction 
releases any locks that it was succeeded to secure. 

▪ Assign an arbitrary linear ordering to the items, and all transactions need to request the locks based on this assigned 
order. 

It has been observed that deadlocks in database systems are very rare and it may be cheaper to detect and resolve them rather 
than to avoid them (J.N. & Reuter, 1983). 

As serializability is the correctness criterion for concurrently processing several transactions, locking must be done correctly 
to assure the above property. There is a protocol called Two-phase Locking (2PL). It is obeyed by all transactions in order to 
ensure serializability. This protocol says that in any transaction, all locks must precede all unlocks. A transaction operates in two 
phases: Locking phase is the first phase, and unlocking phase is the second phase. The first phase is also called the growing phase 
and the second phase is also called the shrinking phase. In the growing phase a transaction obtains more and more locks without 
releasing any locks. During the shrinking phase, the transaction releases more and more locks and is forbidden from obtaining 
additional locks. When the transaction terminates, all remaining locks are released automatically. The phenomenon just before 
releasing the first lock is called lock point. The Two-phase Locking and lock point are shown in Figure 2. 
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Figure 2. Two-phase locking and lock point: Obtain lock; — Release lock. 
Now we discuss a centralized algorithm that utilizes locking in a distributed database system. We assume that all 

transactions write into the database and the database is fully replicated. A fully replicated database in real systems might not be 
very efficient. Besides, almost all the transactions usually read from the database only.  
 
2.1.1 A Sample Centralized Locking Concurrency Control Algorithm 
Assume that a transaction Ti arrives at node X, then following steps are performed: 

▪ Node X sends request to the central node for locking all the entities referenced by the transaction. 
▪ The central node checks all the requested locks. Request is queued if some entity is already locked by another transaction. 

There is a queue for each entity. The request waits in one queue at a time. 
▪ After receiving all its locks, transaction is executed at the central node. The values of read set are read from the database. 

Then required computations are carried out and the values of the write set are written in the database at the central node. 
▪ If the database is fully replicated, the values of the write set are transmitted by the central node to all other nodes. 

▪ Each node receives the new write set and updates the data base. Then central node receives an acknowledgment. 
▪ When acknowledgment from all other nodes in the system is sent to the central nodes, it confirms that the transaction 

Ti has been completed at all nodes. Then the central node releases the locks and starts processing the next transaction. 
There are some variations of the centralized locking algorithm. They are given bellow: 

▪ Locking at Central Node, Execution at all Nodes: In this scenario, we assign the locks only at the central node and send 
the transaction back to the node X. Now transaction Ti is executed at node X. The values of the read set are read, and 
the values of the write set are obtained at node X. Node X sends the values of the write set and receives acknowledgments 
from all other nodes. Then it obtains the information that transaction Ti has been completed. The node X sends a 
message to unlock entities referenced by Ti. After receiving this message, the central node releases the locks and starts 
assigning locks to the waiting transactions which are queued. 

▪ Avoid Acknowledgments, Assign Sequence Numbers: In the centralized control algorithm, the central node requires 
acknowledgments to ensure that the values of the write set have been written successfully at every node in the database. 
But the central node needs not to wait for this. If the central node guarantees that the write set values are written at every 
node in the same order as they were performed at the central node, the condition will be satisfied. To achieve this, the 
central node can assign a monotonically increasing sequence number to each transaction. The sequence number is 
appended to the write set of the transaction and is used to order the update of the new values into the database at each 
node. Now the central node does not have to wait for any acknowledgments. Besides equivalent efficiency is achieved.  

Problems could occur for introducing sequence numbers. Let two transactions T5 and T6 are assigned sequence numbers 5 
and 6 by the central node respectively. Assume that T5 and T6 have no common entities. That is why they do not conflict. For a 
long transaction T5, transactionT6, which arrived at the central node after T5, operation for T6 must wait at all nodes for T5 
although T6 might be ready to write the values of its write set. This problem could be solved by attaching the sequence numbers 
of all lower-numbered transactions for which a given transaction have to wait before writing in the database. This list is called a 
wait-for list. A transaction waits only for the transactions in its wait-for list. The wait-for list is attached to the write set of each 
transaction. Sometimes the wait-for list size can grow very large, but transitivity among sequence numbers in wait-for lists can be 
used to reduce the size of it. Do-not-wait-for list, a complement of this wait-for list, can also be utilized. The details of wait-for 
list including many such ideas are discussed in (Garcia-Molina, 1979). Wait-for list is similar to causal ordering as discussed in 
(Prakash et al., 1997). In (Prakash et al., 1997) definition causal ordering is given as, If two messages M1 and M2 have the same 
destination and SEND(M1) ! SEND(M2), then DELIV ER(M1) ! DELIV ER(M2). 
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It is to be noted that there is a distinction between the reception of a message at a process and the delivery of the message to 
the corresponding process by the causal ordering protocol. Both message reception and delivery events are visible to the causal 
ordering protocol. However, the protocol hides the message reception event from the application process that uses the protocol. 
Thus, the application process is only aware of message delivery. According to the definition above, if M2 is received at the 
destination process before M1, the delivery of M2 to the process is delayed by the causal ordering protocol until after M1 has 
been received and delivered. 

In causal ordering, a message carries information about its transitive causal predecessors and the overheads to achieve this can 
be reduced by requiring that each message carries information about its direct predecessor only. Causal ordering has also been 
discussed in (Bhargava, B., & Hua, C. T.,1983).  

▪ Global Two-phase Locking: This is a simple variation of the centralized locking mechanisms. In centralized locking, a 
transaction gets all locks in the beginning and release all locks in the end. In global two-phase locking, each transaction 
obtains the necessary locks on entities as they are needed. It releases locks that are no longer needed. A transaction cannot 
get a lock after it has released any lock. So if more locks are needed in the future, it should hold on to all the present 
locks. The other parts of the algorithm remain the same. 

▪ Primary Copy Locking: In this mechanism, a copy of each entity on any node is designated as the primary copy of the 
entity. A transaction must obtain the lock on the primary copy of all entities referenced by it. At any given time, the 
primary copy contains the most up-to-date value for that entity. 

Two-phase locking is a sufficient condition for serializability rather than the necessary condition. For example, if an entity is 
only used by a single transaction, it can be locked and unlocked independently. The question is, “How can we know this?” Since 
this information is not known to the individual transaction, so we are not aware of it. That is why, locking techniques are generally 
pessimistic.  
 
2.2 Algorithms Based on Time-Stamp Mechanism 
Timestamp is a mechanism where the serialization order is selected a priori and the transaction execution is bound to maintain 
this order. Each transaction is assigned to a unique timestamp by the concurrency controller. A timestamp on an entity represents 
the time when this entity was last updated. 

All clocks at all nodes must be synchronized for obtaining unique timestamps at different nodes of a distributed system. 
Lamport (Lamport, 1979) has described an algorithm to synchronize distributed clocks via message passing. If a message arrives 
at a local node from a remote node with a higher timestamp, it is assumed that the local clock is slow or behind. Then the local 
clock is incremented to the timestamp of the recently received message. In this way, all clocks become advanced until they are 
synchronized. There is another scenario where two identical timestamps must not be assigned to two transactions. In this case, at 
each tick of the clock, each node assigns a timestamp to only one transaction. In addition, the local clock time is stored in higher-
order bits and the node identifiers are stored in the lower-order bits. Since node identifiers are different, this mechanism will ensure 
timestamps to be unique. When two transactions conflict with each other, they are needed to be processed in timestamp order. 
Thomas (Thomas, 1979) studied the correctness and implementation of this approach and described it. Timestamp order is used 
in each read-write conflict relation and write-write conflict relation. As all transactions have unique timestamps, it clarifies that 
cycles in a graph representing transaction histories are impossible. 
 
2.2.1 Timestamp Ordering with Transaction Classes 
Here, it is assumed that the read set and the write set of every transaction is known in advance. A transaction class is defined by a 
read set and a write set. If the read set of T is a subset of the read set of class C and the write set of T is a subset of the write set 
of class C then it can be said that the transaction T is a member of a class C. Class definitions are used to provide concurrency 
control. This mechanism was used in the development of a prototype distributed database management system called SDD-1, 
mentioned in (Bernstein et al., 1980). 
 
2.2.2 Distributed Voting Algorithm 
The voting rule is the basis for concurrency control. Together with the request resolution rule it ensures that mutual exclusion is 
achieved for possibly conflicting concurrent updates. Two requests are said to conflict if the intersection of the base variables of 
one request and the update variables of the other request is not empty. This algorithm depends on distributed control to decide 
which transaction to be accepted and executed. Vote on each transaction is held in the nodes of the distributed database system. 
If a transaction gets a majority of OK votes, it is accepted for execution. When a transaction gets a majority of reject votes it is 
restarted. Nodes can also defer or postpone voting on a particular transaction. It is a result of the work of Thomas in (Thomas, 
1979).  
2.3 Algorithms Based on Rollback Mechanisms 
In this section, a family of non-locking or optimistic concurrency control algorithms are discussed. Optimistic Methods for 
concurrency control are presented in detail in (Kunget al., 1981). Two families of non-locking concurrency controls are presented. 
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a control mechanism, “hoping” that 
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conflicts between transactions will not occur. Applications for which these methods should be more efficient than locking (Kung 
et al., 1981). 

In this approach, the main concept is to validate a transaction against a set of previously committed transactions. In case the 
validation fails, the read set of the transaction is updated and computation is repeated and again tries for validation. The validation 
phase will use conflicts among the read sets and the write sets along with certain timestamp information. The validation procedure 
starts when a transaction has completed its execution under the optimistic assumption that other transactions would not conflict 
with it. The optimistic approach maximizes the utilization of syntactic information and attempts to make use of some semantic 
information about each transaction. If no a priori information about an incoming transaction is available to the concurrency 
controller, it cannot pre-analyze the transaction and try to guess potential effects on database entities. On the other hand, maximum 
information is available when a transaction has completed its processing. A concurrency controller can make decisions about which 
transaction must abort while other transactions may proceed. This decision can be made at the time of arrival of a transaction, 
during the execution of a transaction, or the decision can be made at the end of processing. Decisions made at arrival time 
considered to be pessimistic and decisions made at the end may invalidate the transaction processing and require rollback 
mechanism. There are four phases in the execution of a transaction in the optimistic concurrency control approach:  

▪ Read: As reading an entity does not refer to a loss of integrity, reads are not restricted. A transaction reads the values of 
a set of entities and assigns them to a set of local variables. The names of local variables have one-to-one correspondence 
to the names of entities in the databases whereas the values of local variables are an indication of a past state of the 
database and are only known to the transaction. Since a value read by a transaction could be changed by a write of 
another transaction, making the read value incorrect, the read set is subject to validation. The read set is assigned a 

timestamp denoted by Π(Ri). 
▪ Compute: The transaction computes the write set. These values are assigned to a set of corresponding local variables. 

Thus, all writes after computation take place on a transaction’s copy of the entities of the database. 
▪ Validate: The transaction’s local read set and write set are validated against a set of committed transactions. It is one of 

the main parts of this algorithm and is discussed in the next section. 

▪ Commit and Write (called write for short): The transaction is said to be committed in the system if it succeeds in 

validation. Then it is assigned a timestamp denoted by Π(Wi). On the other hand, the transaction is rolled back or 
restarted at either the compute phase or the read phase. If a transaction succeeds in the validation phase, its write set is 
made global and the values of the write set become values of entities in the database at each node. 

 
2.3.1 The Validation Phase 
The concurrency controller can utilize syntactic information, semantic information, or a combination of the two. Here we discuss 
the use of syntactic information in the context of a validation at one node only. (Bhargava, B.,1983) discussed the use of semantic 
information.  

Kung and Papadimitriou (Kung et al., 1984) have shown that when only the syntactic information is available to the 
concurrency controller, serializability is the best achievable correctness criterion. We now describe the validation phase.  
A transaction enters the validation phase only after completing its computation phase. The transaction that enters the validation 
phase before any other transaction is automatically validated and committed. This is because initially the set of committed 
transactions is empty. This transaction writes updated values in the database. Since this transaction may be required to validate 
against future transactions, a copy of its read and write sets is kept by the system. Any transaction that enters the validation phase 
validates against the set of committed transactions that were concurrent with it. As an extension the validation procedure could 
include validation against other transactions currently in the validation phase.  

Consider two transactions Ti and Tj. Let S(Ri) and S(Ri) be the read sets and S(Wi) and S(Wj) be the write sets of Tiand 

Tj, respectively. Let Π(Ri) and Π(Rj) denote the time when the last item of the read set S(Ri) and S(Rj) were read from the 

database and let Π(Wi) and Π(Wj) denote the time when the first item of the write set S(Wi) and S(Wj) will be or were written 
in the database. Assume Ti arrives in the system before Tj. Let Tj be a committed transaction when the transaction Tj arrives for 
validation. Now there are four possibilities: 

▪ If Tj and Tj do not conflict, Tj is successful in the validation phase and can either proceed or follow Tj. 

▪ If S(Ri) ∩ S(Wi) ≠ Ø and S(Rj) ∩ S(Wi) ≠ Ø, Ti fails in the validation phase and restarts. 

▪ If S(Ri) ∩ S(Wj) ≠ Ø and S(Rj) ∩ S(Wi) = Ø, Tj is successful in validation. Tj must proceed Tj in any serial story 

since Π(Ri) < Π(Wj). This possibility is illustrated as follows: 
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The edge between S(Wi) and S(Wj) does not matter because if S(Wi) intersects with S(Wj), then S(Wi) can be replaced 

by S(Wi) - [S(Wi) ∩ S(Wj)]. In other words, Ti will write values for only those entities that are not common with the 
write set of Tj. If we do so, we get the equivalent effect as if Ti were written before Tj. 

▪ If S(Ri) ∩ S(Wj) = Ø and S(Rj) ∩ S(Wi) ≠ Ø, Tj is successful in validation. Tj must follow Tj in any serial history 

since Π(Wi) > Π(Rj). This possibility is illustrated as follows: 
 

 
 
 

For a set of concurrent transactions, we proceed as follows: For each transaction that is validated and enters the list of 
committed transactions, we draw a directed edge according to the following rules: 

▪ If Ti and Tj do not conflict, do not draw any edge. 

▪ If Ti must precede Tj, draw an edge from Tj to Tj,Tj→Tj. 

▪ If Tj must follow Tj, draw an edge from Tj to Tj,Tj←Tj. 
Thus, a directed graph is created for all committed transactions with transactions as nodes and edges as explained above. 

When a new transaction Tj arrives for validation, it is checked against each committed transaction to check if Tj should precede 
or follow, or if the order does not matter.  

Condition for Validation: There is never a cycle in the graph of committed transactions because they are serializable. If the 
validating transaction creates a cycle in the graph, it must restart or rollback. Otherwise, it is included in the set of committed 
transactions. We assume the validation of a transaction to be in the critical section so that the set of committed transactions does 
not change while a transaction is actively validating.  

In case a transaction fails in validation, the concurrency controller can restart the transaction from the beginning of the read 
phase. This is because the failure in the validation makes the read set of the failed transaction incorrect. The read set of such a 
transaction becomes incorrect because of some write sets of the committed transactions. Since the write sets of the committed 
transactions meet the read set of the failed transaction (during validation), it may be possible to update the values of the read set 
of the transaction at the time of validation. If this is possible, the failed transaction can start at the beginning of the compute phase 
rather than at the beginning of the read phase. This will save the I/O access required to update the read set of the failed transaction. 
 
2.3.2 Implementation Issues 
Let Ti be the validating transaction and let Tj be a member of a set of committed transactions. The read sets and write sets of the 
committed transactions are kept in the system. The transaction is validated against the committed transactions. The committed 
transactions are selected in the order of their commitment. The read set is updated by the conflicting write set at the time of each 
validation. If none of the transactions conflict with the validating transaction, it is considered to have succeeded in the validation 
and hence to have committed. This obviously requires updating a given entity of the read set many times and thus is inefficient. 
But one nice property of this procedure is that the transaction does not have to restart from the beginning and does not have to 
read the database on secondary storage. A practical question is whether the read sets and write sets can be stored in memory. The 
transactions Tj that must be stored in memory must satisfy the following condition: If Tj is a committed transaction, store Tj for 

future validation if Ti∉ set of committed transaction such that:  
 

{Π(Ri) <Π (Wj) } AND {S(Ri) ∩ S(Wj) ≠ Ø} 
 

It has been shown that the set of transactions to be stored for future validation will usually be small (Bhargava, B. 
K.,1982). In general, a maximum size of the number of committed transactions that can be stored in the memory can be determined 
at design time. In case the number of committed transactions exceed this limit, the earliest committed transaction Tj can be deleted 
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from this list. But care should be taken to restart (or invalidate) all active transactions Ti for which Π(Ri) < Π(Wj) before Tj is 
deleted.  

A DETAILED EXAMPLE: This example illustrates a variety of ideas of optimistic approach and its advantages over 
locking. We assume that a history is presented to a scheduler (concurrency controller). The scheduler either accepts or rejects the 
history. It does so by trying conflict preserving exchanges on the input history to check if it can be serializable.  
In this example, we use Ri and Wi to represent the read action (as well as the read set) and the write action (as well as the write 
set) of a transaction Ti. Let h be an input history of n transactions to the scheduler as follows:  
 

h = R1R2W2R3W3……RnWnW1 
 

Here transaction T1 executes the read actions, followed by the read/write action of T1, T2,….,Tn followed by the 
write actions of T1. Suppose R1 and W2 conflict as represented by an edge as follows: 
 
 

 
 
 

The history h is not allowed in the locking protocols because W2 is blocked by R1. If T1 is a long transaction and T2 
is a small transaction, the response time for T2 will suffer. In general T1 can block T2, T2can block T3 (if T2 and T3 have a 
conflict) and so on. Let us consider several cases in optimistic approach. 

Case 1: For the history h, in the optimistic approach of Kung and Robinson (Kung & Robinson, 1981) Ti(i = 2, …, 
n) can commit. Write sets (Wis) of committed transactions are saved to validate against the read set of T1. Basically the conflict 
preserving  exchange (switch) as follows is attempted so that R1 can be brought next to W1. 
 

 
 
Case 2: An extension of this idea is to try the either exchange (switch) as follows: 
 
 

 
The resulting histories can be either  
 

h = R1R2W2R3W3……RnWnW1 
Or 

h = R2W2……RnWnR1W1. 
For switching W1, we would need to save not only the write sets of committed transactions, but also the read sets of 

committed transactions. This will allow more histories to be acceptable to the scheduler. 
Case 3: A further extension of this idea is to try switching R1 toward W1 and W1 toward R1 if conflict preserving 

exchanges are possible. Consider the conflict as follows: 
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Consider the history h = R1R2W2…...Rk-1Wk-1Wk ……RnWnW1 
Because of a conflict edge between R1 and Wk, R1can be scheduled only before WK. Similarly, due to the conflict edge 

Rk-1 and W1, W1 can be scheduled only after Rk-1. Switching R1 and W1, the scheduler can get a serializable history R2W2…. 
Rk-1Wk-1R1W1RkWk….RnWn. Using the switching of R1 or W1 alone would not have allowed this history to be acceptable 
to a scheduler. Finally, we consider the case where both R1 and W1 are stuck due to conflicts. Consider the history: 
 

 
 

R1 can switch up to T3 and W1 can switch up to Tk due to conflicts (say R1W3 and W1Wk). The scheduler can try 
to move the sub-history R1R3W3 to the right and RkWkW1 to the left as shown next: 
 
 

 
 
We can get a history as follows: 
 

R2W2RkWk R1 W1 R3 W3….RnWn 
which is serializable. 
 
2.3.3 Implementation of Validations 
Let us now illustrate how these ideas for optimistic can be implemented. Consider n transactions. Assume T1 starts before T2, 
but finishes after Tn. Let T2T3 ..Tn finish in order. Since T2 is the first transaction to validate, it is committed automatically. 
So we have a conflict graph with a node for T2 as follows: 

T2 
 

When T3 arrives for validation, the read set of T3 is validated against write set ofT2. If they conflict, the edge T3→T2 

is drawn. Next, the write set of T3 is validated against the read set of T2 leading to the edge T2→T3. Since this causes a cycle, 
T3 is aborted. Otherwise, T3 is serialized with T2. So we have a conflict graph say as follows:  
 

T2 – → T3 
 

For a transaction T4 the edges are checked as follows: Check the edge T4→ T2. If it exists, check the edge T2→–  T4. 

Abort if both edges exist. If only T4→ T2 exists, do not check the edge T4→ T3, but check the edge T3→T4only. This requires 
checking only three edges as follows: 
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If edge T4→ T2 does not exist, there is no need to check T2→ T4. In this case check the edge T4→ T3 and T3→ 

T4. Once again only three edges are checked as follows: 
 

 
 

So, in general, for every new transaction that comes for validation, only n edges are checked if there are n – 1 committed 
transaction. This may be more efficient implementation than checking for a cycle for the conflict graph of n transactions for each 
validation. Now we present a theorem that relates the rollback of optimistic with deadlock of locking approach shown by B. 
Bhargava in:(Bhargava,1984). 

THEOREM 1 (Bhargava, 1984): In a two-step transaction model (all reads for a transaction precede all writes) 
whenever there is a transaction rollback in the optimistic approach due to a failure in the validation, there will be a deadlock in the 
locking approach (unless deadlocks are not allowed to occur) and will cause a transaction rollback. 

PROOF: For deadlock detection, the system can produce a wait-for digraph in which the vertices represent the 
transactions active in the system. An edge between two transactions in the wait-for graph is drawn if and only if one transaction 
holds a read-lock or a write lock and the other transaction is requesting a write lock on the same item. This will happen when the 
read-set or the write-set of the first transaction conflicts (intersects) with the write-set of the second transaction. An edge in the 
dynamic conflict graph exists in exactly the same case. Thus, a wait-for graph has the same vertices (i.e., the set of all active 
transactions) as the dynamic conflict graph and the edges in the wait-for graph correspond one to one with the edges in the 
dynamic conflict graph. Hence the wait-for graph is identical to the dynamic conflict graph and a cycle in the wait-for graph occurs 
whenever there is a cycle in the dynamic conflict graph. A deadlock occurs when there is a cycle in the wait-for graph and to resolve 
the deadlock, some transaction must be rolled back. Since validation of a transaction fails and a rollback happens when there is a 
cycle in the dynamic conflict graph, the assertion of the theorem is concluded.  
 
3. Performance Evaluation of Concurrency Control Algorithm 
There are two main criteria for evaluating the performance of core control algorithms. We discuss them in some detail as follows: 
 
3.1 Degree of Concurrency 
This is the set of histories that are acceptable to a scheduler. For example, a serial history has the lowest degree of concurrency. 
2PL and optimistic approaches provide a higher degree of concurrency. The concurrency control algorithms have been classified 
in various classes based on the degree of concurrency provided by them in (Papadimitriou, 1979). The concurrency control 
algorithms for distributed database processing have been classified in (Bhargava et al., 1983). We specifically point 
out the classes of global two-phase locking (G2PL) and local two-phase locking (L2PL). All histories in class G2PL are 
characterized by global lock points. Since each node is capable of independent processing, the global history can be serializable if 
each node maintains the same order of lock points for all conflicting transactions locally. The class L2PL contains the class G2PL 
and provides a higher degree of concurrency (Bhargava & Hua, 1983). In a history for the class DSTO (distributed serializable in 
the time stamp order), the transactions are guaranteed to follow in the final equivalent serial history, the same order as the 
transaction’s initial access. 

In contrast, the class DSS (distributed strict serializability) the histories retain the completion order of transactions based 
on the event w. The class DSTO is contained in class DSS. Finally, the class DCP (distributed conflict preserving) is based on the 
notion the a read or write action is freely rearranged as long as the order of conflicting accesses is preserved. The serializability is 
guaranteed by maintaining an acyclic conflict graph that is constructed for each history. 

 
 

3.1.1 The Hierarchy 
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All the classes G2PL, L2PL, DCP, DSTO, and DSS are serializable and form a hierarchy based on the degree of concurrency. 
Figure. 3 depicts the hierarchy, where SR is the set of all serializable histories. 

In Figure. 3, each possible intersection of these classes is marked by ‘.i’ where i is from 1 to 11, and the exemplary history for area 
‘.1’ is denoted as ‘h.i’. Some of the histories are composite (formed by concatenating two histories). The transaction set and conflict 
information are given below. Let there be two nodes represented by N = {1, 2}, and seven transactions denoted by T = {a, b, c, 
d, e, f, g}. 

The atomic operations for each transaction are as shown below: 
 

Trans. ‘a’ = { Ra1[x]. Wa1[y].Wa2[y] }; 
Trans. ‘b’ = { Rb1[w]. Wb1[y]. Wb2[y] }; 
Trans. ‘c’ = { Rc2[u]. Wc1[v]. Wc2[v] }; 
Trans. ‘d’ = { Rd2[v]. Wd1[v]. Wd2[v] }; 
Trans. ‘e’ = { Re1[w]. We1[v]. We2[v] }; 

Trans. ‘f’ = { Rf2[t]. Wf1[w]. Wf2[w] }; 
Trans. ‘g’ = { Rg2[w]. Wg1[y]. Wg2[y] }; 

 
Basically, each transaction reads an entity and broadcasts the update to both nodes. The hierarchical relation among the 

classes DCP, DSS, and G2PL is similar to that in (Papadimitriou, 1979). However, the classes L2PL and DSTO and their 
relationships with other classes is different. Note that, unlike the class 2PL in the centralized database system, the class L2PL 
which also uses two-phase locking but with local freedom of choosing the lock points is not contained in DSS. 
 

 

 
 

 
 

Figure 3. The hierarchy of the classes SR, DCP, L2PL, G2PL, DSTO, and DSS. 
3.2 System Behavior 
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One can evaluate the performance of a concurrency control algorithms by studying the response time for transactions, throughput 
of transactions per second, rollback or blocking of transactions, etc. Such measures are system dependent and change as technology 
changes. Several research papers have done simulation, analytical, and experimental study of a wide range of algorithms. These 
studies tend to identify the conditions under which a specific approach will perform better. For example, in (Bhargava ,1982), we 
have shown after detailed simulations that the optimistic approach performs better than locking when there is a mix of large and 
small transactions. This is contrary to the wisdom that optimistic performs better when there are few conflicts. We found that in 
the case of low conflicts, in optimistic approach there are fewer aborts, but in locking there is less blocking. Similarly, if a lot of 
conflicts occur, both locking and optimistic algorithms suffer. Thus, one could conclude that if the cost of rollback and validation 
is not considerably high, in both locking and optimistic, the transactions will either suffer or succeed. In many applications, it has 
been found that conflicts are rare (Davidson, 1984), (Gray, 1981), (J.N. & Reuter, 1983). We present another strawman analysis. 
Assume that the database size is M and the read set and write set size is B. CBM represents the number of combinations for 
choosing B objects from a set of M objects. 

The probability that two transactions do not share a data object is given by the following term: 

𝐶
𝑀
𝐵
× 𝐶

(𝑀 − 𝐵)
𝐵

𝐶
𝑀
𝐵
× 𝐶

𝑀
𝐵

 

 
The probability of a cyclic conflict is order (P(C))2 which is quite small.We have conducted a simulation study 

(Bhargava, 1982) that illustrates the issues of arrival rate, relates multiprogramming level, frequency of cycles in a database 
environment. In Figure 4, we show that the degree of multiprogramming is low for a variety of transaction arrival rates in a sample 
database. 

 
Figure 4. Database size = 100, I/O cost = 0.025,CPU cost = 0.0001. 
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In Figure 5, we show that the probability of a cycle is quite low for low degrees of multiprogramming. In Figure 6, we 
found that optimistic performs better than locking for very low arrival rates. Details of this study can be found in (Bhargava, 
1982). 

 
4. More Ideas for Increasing Concurrency 
4.1 Multidimensional Time Stamps 
There are several variations of timestamp ordering. For example, multiple versions (Papadimitriou, 1986) of item values have been 
used to increase the degree of concurrency. The conventional time stamp ordering tends to prematurely determine the serializability 
order, which may not fit in with the subsequent history, forcing some transactions to abort. The multidimensional time stamp 
protocol (Leu & Bhargava, 1987) provides a higher degree of concurrency than single time stamp algorithms. This protocol allows 
the transaction to have a time stamp vector of up to k elements. The maximum value of k is limited by twice the maximum number 
of operations in a single transaction. Each operation may set up a new dependency relationship between two transactions. The 
relationship (or order) is encoded by making one vector less than another. A single time stamp element is used to bear this 
information. Earlier assigned elements are more significant in the sense that subsequent dependency relationships cannot conflict 
with previously encoded relationships. Thus, the scheduler can decide to accept or abort an operation based on the dependency 
information derived from all proceeding operations. In other words, the scheduler can use the approach of dynamic timestamp 
vector generations foreach transaction and dynamic validation of conflicting one can use the approach of dynamic timestamp 
vector generations for each transaction and dynamic validation of conflicting transactions to increase the degree of concurrency. 
The class of multidimensional time stamp vectors intersects with the class SSR and 2PL and is contained in the class DSR. Classes 
2PL, SSR, and DSR are defined as in (Papadimitriou, 1979). 
 
4.2 Relaxations of Two-Phase Locking 
In (Leu & Bhargava, 1988), we have provided a clarification of the definition of two-phase blocking. A restricted non two-phase 
locking (RN2PL) class that contains the class of 2PL has been formally defined. An interesting interpretation of the RN2PL is 
given as follows.A transaction (a leaser) may release a lock (rent out a lock token) before it may still request some more locks. If 
alater transaction (a leasee) subsequently obtains such a released lock (rents the lock token), it cannot release this lock(sublease the 
lock token) until ALL its leasers will not request any more locks. (Now the leasers are ready to transferal their lock tokens to 
leasees. So, each of their leasees can be a new leaser.)This scenario enforces acyclic leaser-leasee relationships, and thus produces 
only serializable histories. Further, the locking sequence may not be two-phased. It is not appropriate to claim that either protocol 
is superior to the other because many conditions need to be considered for such a comparison. Since two-phase locking is a special 
case of restricted-non-two-phase locking, it gives the flexibility for some transactions to be non-two-phase locked. In some cases, 
it would be desirable to allow long-lived transactions to be non-two-phase locked to increase the availability of data items. 
 

 
 

Figure 5. Database size = 500, transaction size = 5, 10, 15, 20, 25. 
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Figure 6. Database size = 200, no. of nodes = 3, communication delay = 0.10, I/O cost = 0.025, transaction size = 5 (time in 

seconds). 
4.3 System Defined Prewrites 
In (Madria & Bhargava, 1997) we have introduced a prewrite operation before an actual write operation is performed on database 
files. A prewrite operation announces the value that a transaction intends to write in future. A prewrite operation does not change 
the state of the data object. Once all the prewrites of a transaction are announced, the transaction executes aprecommit operation. 
After the precommit, another read transaction is permitted to read the announced prewrite values even before the other transaction 
has finally updated the data objects and committed. The eventual updating on stable storage may take a long time. This allows 
non strict executions and increases the potential concurrency as compared to the algorithms that permit only read and write 
operations on the database files. A user does not explicitly mention a prewrite operation but the system introduces a prewrite 
operation before every write. Short duration transactions can read the value of a data item produced but not yet released by a long 
transaction before its commit. Therefore, using prewrites, one can balance a system consisting of short and long transactions 
without causing delay for short duration transactions. 
 
4.4 Flexible Transactions 
The flexible transaction model (Zhang et al., 1994) supports flexible execution control flow by specifying two types of 
dependencies among the sub transactions of a global distributed transaction: 

▪ Execution ordering dependencies between two sub transactions, and 
▪ Alternative dependencies between two subsets of sub transactions. 
A flexible transaction allows for the specification of multiple alternate subsets of sub transactions to be executed and results 

in the successful execution and commitment of the sub transactions in one of those alternate subsets, the execution of a flexible 
transaction can proceed in several different ways. The subtransaction in different alternate subsets maybe attempted simultaneously, 
as long as any attempted sub transactions not in the committed subset of sub transactions can either be aborted or have their effects 
undone. The flexible transaction model increases the failure resilience of global transactions. In (Zhang et al., 1994), we have 
defined a weaker form of atomicity, termed semi atomicity that is applicable to flexible transactions. Semi atomicity allows a 
flexible transaction to commit as long as a subset of its sub transactions that can represent the execution of the entire flexible 
transaction commit. Semi atomicity enlarges the class of executable global transactions in a heterogeneous distributed database 
system. 
 
4.5 Adaptable Concurrency Control 
Existing database systems can be interconnected that results in a heterogeneous distributed database system. Each site in such a 
system could use a different strategy for concurrency control. For example, one site could be using the two-phase locking 
concurrency control method while another could be running the optimistic method. Since it may not be possible to convert such 
different systems and algorithms to a homogeneous system, solutions must be found to deal with such heterogeneity. Already 
research has been done toward the designing of algorithms for performing concurrent updates in a heterogeneous environment 
(Zhang & Elmagarmid, 1993). The issues of global serializability and deadlock resolution have been solved. The approach in 
(Bhargava & Riedl, 1989) is a variation of the optimistic concurrency control for global transactions while allowing individual 
sites to maintain their autonomy. Another concept that has been studied in the Reliable, Adaptable, Interoperable Distributed 
(RAID) database system (Bhargava & Riedl, 1989) involves facilities to switch concurrency control methods. A formal model for 
an adaptable concurrency control (Bhargava & Riedl ,1989) suggested three approaches for dealing with various system and 
transaction’s states: generic state, converting state, and suffix sufficient state. The generic state method requires the development 
of a common data structure for all the ways to implement a particular concurrency controller (called sequencer). The converting 
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state method works by invoking a conversion routine to change the state information as required by a different method. The suffix 
sufficient method requires switching from one method to another by overlapping the execution of both methods until certain 
termination conditions are satisfied. 
 
5. Conclusion 
Concurrency Control problem occurs when several processes are concurrently involved in the system. Previously, serializability and 
two-phase locking were discussed in (Eswaran et al., 1976). (Eswaran et al., 1976) shows that, consistency requires that a 
transaction cannot request new locks after releasing a lock. Then it is argued that a transaction needs to lock a logical rather than 
a physical subset of the database. The ideas of timestamps were introduced by (Thomas, 1979).  

The optimistic approach was proposed in (Kung & Robinson, 1981). Here, it is discussed that optimistic approaches 
rely mainly on transaction backup as a control mechanism, “hoping” that conflicts between transactions will not occur. In an 
optimistic approach, the major difficulty is starvation, which can be solved by using locking. 

C.H. Papadimitriou has shown in (Papadimitriou, 1979) regarding the classes of serializability and the formalism for 
concurrency control. Several books that detail these subjects have been published (Bhargava, 1987), (Papadimitriou, 1986), 
(Bernstein et al., 1987), in addition to survey papers (Bernstein & Goodman, 1981), (Bhargava, 1983). The performance evaluation 
was studied in (Garcia-Molina, 1979). The ideas of adaptable concurrency control were published in (Bhargava & Riedl, 1989) 
and were implemented in the RAID system (Bhargava & Riedl, 1989). It has been commented by system experts that concurrency 
control only contributes5 percent to the response time of a transaction and so even a simple two-phase locking protocol should 
suffice. However, due to the many interesting ideas that came into play in distributed database systems in the context of replication 
and reliability, research in concurrency control is continuing. 

We continue to learn of new concepts including flexible   transactions, value-dates, prewrites, degrees of commitment 
and view serializability discussed in (Bhargava, 1987). In large scale systems, it is difficult to block access for transactions using 
locking mechanism to database objects. We encourage readers to learn from various books on both theory and implementation of 
concurrency control mechanisms. 
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