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Abstract 
This papers aims to uncover stylized facts of monthly stock market returns and identify adequate GARCH model with 
appropriate distribution density that captures conditional variance in monthly stock market returns. We obtain monthly close 
values of Bombay Stock Exchange’s (BSE) Sensex over the period January 1991 to December 2019 (348 monthly observations). 
To model the conditional variance, volatility clustering, asymmetry, and leverage effect we apply four conventional GARCH 
models under three different distribution densities. We use two information criterions to choose best fit model. Results reveal 
positive Skewness, weaker excess kurtosis, no autocorrelations in relative returns and log returns. On the other side presence of 
autocorrelation in squared log returns indicates volatility clustering. All the four GARCH models have better information 
criterion values under Gaussian distribution compared to t-distribution and Generalized Error Distribution. Furthermore, results 
indicate that conventional GARCH model is adequate to measure the conditional volatility. GJR-GARCH model under 
Gaussian distribution exhibit leverage effect but statistically not significant at any standard significance levels. Other asymmetric 
models do not exhibit leverage effect. Among the 12 models modeled in present paper, GARCH model has superior 
information criterion values, log likelihood value, and lowest standard error values for all the coefficients in the model.        
 
Keywords: Stock Market Returns, Stylized Facts, Volatility Models, Leverage Effect, Asymmetric Model.  
 
1. Introduction 
The key characteristics usually we find in asset returns are, high kurtosis, high Skewness, volatility clustering, asymmetry, and 
leverage effect. The Generalized Autoregressive Conditional Heteroscedastic (GARCH) model of Bollerslev (1986) is helpful to 
capture the leptokurtic nature of asset returns and volatility clustering and also helps to model varying conditional volatility in 
asset returns. On the other side asymmetric GARCH models like GJR-GARCH of (Glosten et al., 1993) Exponential GARCH 
of (Nelson, 1991) and Asymmetric Power ARCH (APARCH) of (Ding et al., 1993) captures asymmetry in returns series and 
the leverage effect.  

The aim of present paper is to exemplify volatility models by their efficiency to capture stylized facts of India's 
benchmark stock market index i.e., Sensex monthly returns. Similar research is conducted in the Indian context by few 
researchers like (Karmakar, 2007) who report leverage effect, volatility clustering, and high persistence in Indian stock market 
during the period 1990-2004. Similarly (Mittal et al., 2012) report negative Skewness, high kurtosis, fat-tailed non-normal 
distribution, high persistence in volatility, presence of leverage effect. They suggest GARCH model for symmetric effects and P-
ARCH model for asymmetric effects. In another context (Joshi, 2014) using three different models over the period 2010-2014 
analyze Sensex and report mean reverting behavior, volatility clustering, persistence, and presence of leverage effect. This paper 
differ extant literature in multiple perspectives. First, we consider very long time period spread over 29 years. Second, we build 
symmetric and asymmetric GARCH models under different distributions. Third, we compare adequacy of each GARCH model 
under different distribution, and also among symmetric and asymmetric models. Finally, we apply robust information criterions 
to select the best fit model.  

We estimate GARCH (1,1), GJR-GARCH (1,1), EGARCH (1,1), and APARCH (1,1) models together with three 
different distribution density functions for a total of 12 models. In this paper we evaluate GARCH models using the Gaussian 
distribution, Student t-distribution, and Generalized Error Distribution (GED). We apply two different information criterions 
to compare symmetric and asymmetric models. The first one is Akaike Information Criterion (AIC) (Akaike, 1974) and the 
second is Bayesian Information Criterion (BIC) (Schwarz, 1978). In addition, we also consider log likelihood ratio. We also use 
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Ljung-Box Q-statistics for the Q(5), Q(10) and Q(20) of the standardized residuals and squared standardized residuals to test 
for serial correlations and residual GARCH effects. 

Our results suggest that symmetric and asymmetric GARCH models under Gaussian distribution outperform 
GARCH models under two other distributions i.e., student’s t-distribution and GED distribution. The conventional GARCH 
model has better information criterion values than asymmetric models suggesting that traditional GARCH model is adequate to 
capture conditional volatility of Sensex monthly returns series. We find leverage effect only in GJR-GARCH model with 
Gaussian distribution.   

The paper is structured as follows. In Section II, we explain the data and methodology. In Section III, we present 
preliminary analysis. In Section IV we discuss empirical results. Finally, Section V draws conclusion. 
 
2. Data and Methodology 
In this paper we examine which distribution process is appropriate to model conditional volatility of Sensex monthly returns 
with different GARCH family models. In addition, we try to determine which of the GARCH family models is effective to 
capture conditional variance of Sensex monthly returns series. For the purpose of this paper, monthly close values of BSE Sensex 
(Sensex) are used for the period January 1991 to December 2019 totaling to 347 monthly return observations. Monthly close 
values of Sensex come from the Bombay Stock Exchange official website (www.bseindia.org). We use returns of monthly stock 
index values  

        rt = 100 * ln (Pt / (Pt-1)                           (1) 
 
Where, Pt is the closing value of the index at month t.  
 
GARCH Model 
The most popular conventional volatility model is the GARCH model proposed by Bollerslev (1986). The standard 
GARCH(1,1) model is given by 
 

                                                                      σ2
t = α0+ α1ε2

t−1 + β1σ2
t−1                                                 (2) 

 
GARCH model is symmetric in modeling conditional volatility. To model asymmetric properties of asset returns volatility the 
GJR-GARCH model, the EGARCH model and the APARCH models are most popular.  
 
GJR-GARCH Model 

         σ2
t = α0 + α1ε2

t−1 + λ1 dt-1ε2
t−1 + β1σ2

t−1                                                 (3) 
    
Exponential GARCH (EGARCH) Model  

 

log (σ2
t) = α0 + α1εt−1 + λ1 (|εt−1|−E| εt−1|) + β1 log (σ2

t−1)              (4) 
 

APARCH model 
                                                  σδ

t = α0 + α1 (|εt−1| − λεt−1)δ + β1σδ
t−1                                                  (5) 

Where, parameter δ (δ < 0) plays the role of a Box–Cox transformation of the conditional standard deviation σt, while λ 
reflects the leverage effect. 
 
3. Preliminary Analysis 
Table 1. Important descriptive statistics of Sensex over the period January 1991 to December 2019 
 

Monthly Sensex Data 

Descriptive Month Close Relative Return Log Return Squared Return 

 Minimum 1167.97 -23.89 -27.30 0.00 

 Maximum 41253.74 42.00 35.06 1229.43 

 Mean 12822.20 1.38 1.08 59.21 

 Std. Dev. 11011.54 7.80 7.63 120.58 

 Skewness 0.865 0.594 0.096 5.091 
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 Kurtosis 2.572 6.109 5.167 37.430 

 Jarque-Bera  0.00 0.00 0.00 

Q (10)  12.47 (0.25) 11.04 (0.35) 87.66 (0.00) 

Q (20)  23.41 (0.27) 23.51 (0.26) 120.83 (0.00) 

ADF  -16.90 (0.00) -1707 (0.00) -14.98 (0.00) 

DF-GLS  -4.97 -5.84 -4.71 

Observations 347 347 347 347 

 
Table 1 reports descriptive statistics of Sensex close price, relative return, log return, and squared log return. During 

the study period (1991-2019, 348 observations) Sensex has highest close of 41,253.74 points and lowest close of 1,167.97 
points with an average of 12,822.20 points. For the same period the relative return has highest monthly return of 42 percent and 
lowest return of -23.89 percent. Similarly, Log return has highest return of 35.06 percent and lowest monthly return of -27.30 
percent. The average monthly return of relative return is 1.38 percent and log return is 1.08 percent. On the other side volatility 
of log returns (5.17 %) is comparatively lower than the volatility of relative returns (6.11 %). The sample kurtosis of relative 
return and log return is greater than 3 and indicates that returns series has excess kurtosis. However, the excess kurtosis of 
relative return series is 3 and for log return series is 2. This result is similar to the weaker leptokurtosis report by Schrimpf 
(2010). Excess kurtosis in relative return and log return postulates that the unconditional distribution of Sensex return series is 
asymmetric. In addition, Skewness of relative return is 0.59 and log return is 0.09. Excess Skewness is observed for the relative 
return and near to zero Skewness for log return leading to high Jarque-Bera statistics indicating non-normality of the returns 
series. The J-B test of normality relying on excess kurtosis and Skewness, confirms rejection of null hypothesis for both the series 
at 1 percent level of significance. These results indicate that Sensex returns are significantly different from a normal distribution.  

The results of Augmented Dickey-Fuller (ADF) and Dickey-Fuller - Generalized Least Squares (DF-GLS) tests reject 
the unit root hypothesis at the 1 percent significance level which indicates that the relative return and log return series are 
stationary. The sample autocorrelation function (ACF) of the squared log returns has high value for the Q(10) = 87.66 (p = 
0.00) and Q(20) = 120.83 (p = 0.00) test. The slow decay of ACF of the squared log returns suggests that GARCH models 
may be appropriate to fit the conditional variance. 
 

 
Figure 1. Time series plot of Sensex monthly close values over the period January 1991 to December 2019 

 
Figure 1 shows the time series plot of Sensex monthly close values over the period January 1991 to December 2019. 

From the time series plot it is evident that for most of the times, the Sensex has upward trend. In contrast to upward trend, 
during the period from December 2007 (20,286.99 points) to March 2009 (9,708.50 points) the Sensex tumble continuously 
for 15 months with a steep loss of 52 percent. This down trend is akin to global turmoil witness by all major economies across 
the world. Similarly, during December 2010 (20,509.09) to December 2011 (15,454.92) the Sensex experience downward 
trend. However, when compared to 2008 downturn, this is lower with a dent of 25 percent in Sensex value.  

 



Copyright © CC-BY-NC  2020, CRIBFB |IJAFR 

 

www.cribfb.com/journal/index.php/ijafr                   International Journal of Accounting & Finance Review                  Vol. 5, No. 1; 2020 
 

45 

                         
 

 

 Return series Autocorrelation function  Partial autocorrelation function 
R

el
at

iv
e 

R
et

ur
n
 

   

L
og

 R
et

ur
n 

   

Sq
ua

re
d
 L

og
 R

et
ur

n 

   
 

Figure 2. Time series plots of return series, autocorrelation function and partial autocorrelation function 
 

Figure 2 presents return series, autocorrelation function and partial autocorrelation function plots of relative return, 
log return, and squared log returns. The relative return and log return series plots indicate no significant autocorrelations or 
partial autocorrelations. However, in the squared log returns plots the return series has slow decay and there is a presence of 
significant autocorrelations and partial autocorrelations, suggesting that GARCH models may be appropriate to model the 
conditional volatility of Sensex monthly returns series.  

 
4. Empirical Analysis 
In this paper, to model conditional volatility of Sensex monthly log returns series we apply conventional symmetric model and 
three asymmetric GARCH models under three different distribution densities. To test serial correlations and GARCH effects 
we form Ljung-Box Q-statistics of 5, 10, and 20 lag lengths for standardized residuals and squared standardized residuals. To 
assess model fit, model adequacy, and select the best fit model we use AIC and BIC information criterion. Empirical results of 
our data are present in Table 2 and Table 3.   
 
 Table 2. Parameter estimates of GARCH (1,1) and GJR-GARCH (1,1) model specifications 

Parameter GARCH   GJR-GARCH 

  N t GED   N T GED 

α0 0.8983*** 0.9387*** 0.9555***   0.9866*** 1.0061*** 1.0203*** 

 (0.3135) (0.3164) (0.3158) (0.3200) (0.3216) (0.3204) 
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α1 0.1009*** 0.0944*** 0.0951*** 0.0781*** 0.074** 0.0745** 

 (0.0262) (0.0281) (0.0290) (0.0277) 0.0308) (0.0313) 

β1 0.8931***  0.8983*** 0.8980*** 0.8960*** 0.9002*** 0.9005*** 

 (0.0276) (0.0299) (0.0307) (0.0269) (0.029) (0.0298) 

λ - - - 0.0399 0.038 0.0368 

    (0.036) (0.0376) (0.0391) 

v - 3.32 1.75 - 3.62 1.78 

  (2.26) (0.2445)  (2.862) (0.2486) 

Log(L) -1161.72 -1161.52 -1161.14 -1161.16 -1161.05 -1160.71 

Diagnostic Checking        

Standardized Residuals        

Q (5) p value in parentheses 1.35 (0.93) 1.38 

(0.92) 

1.37 

(0.93) 

 1.17 (0.95) 1.19 (0.95) 1.20 (0.94) 

Q (10)  p value in 

parentheses 

5.39 (0.86) 5.35 

(0.87) 

5.35 

(0.87) 

 5.15 (0.88) 5.11 (0.88) 5.12 (0.88) 

Q (20)  p value in 

parentheses 

12.41 

(0.90) 

12.30 

(0.90) 

12.28 

(0.91) 

 12.20 (0.91) 12.08 

(0.91) 

12.07 

(0.91) 

Sqrd Standardized Residuals        

Q (5) p value in parentheses 5.49 (0.36) 5.27 

(0.38) 

5.31 

(0.38) 

 4.88 (0.43) 4.72 (0.45) 4.75 (0.45) 

Q (10)  p value in 

parentheses 

11.30 

(0.33) 

11.40 

(0.33) 

11.38 

(0.33) 

 10.74 (0.38) 10.91 

(0.36) 

10.92 

(0.36) 

Q (20)  p value in 

parentheses 

22.97 

(0.29) 

22.99 

(0.29) 

22.95 

(0.29) 

 22.60 (0.31) 22.71 

(0.30) 

22.71 

(0.30) 

Information Criteria        

AIC 2331.45 

(df 4) 

2333.04 

(df 5) 

 2332.29 

(df 5) 

 2332.33 (df 5) 2334.10 

(df 6) 

2333.42 

(df 6) 

BIC 2346.84 

(df 4) 

2352.29 

(df 5) 

2351.53 

(df 5) 

 2351.58 (df 5) 2357.20 

(df 6) 

2356.52 

(df 6) 

OBS 347 347 347   347 347 347 

 
*** significant at 1% level, ** significant at 5% level, * significant at 10% level. In parameter estimates values in parentheses are 
standard errors.  

AIC - Akaike's Information criterion and BIC - Bayesian Information Criterion, OBS – Number of monthly observations 
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From results present in Table 2, it is visible that for the GARCH model with three different distributions α0 is 

positive and α1 + β1 is closer to 1. The GARCH equation has statistically significant positive short-run and long-run values with 

low standard error values. The standard errors of α0 under all the distributions are very close and are around 0.31. Similarly, the 
standard errors of the parameters in the volatility equation are around 0.02. The residuals series looks like a white noise process 
at one percent significance level. For the Gaussian distribution we have Q (5) = 1.35(0.93), Q (10) = 5.39(0.86), and Q (20) 
= 12.41(0.90) for standardized residuals series indicating no serial correlation and Q (5) = 5.49(0.36), Q (10) = 11.30(0.33), 
and Q (20) = 22.97(0.29) for squared standardized residuals series, where the number in parentheses is the p value of the test 
statistic indicating that there is no conditional heteroscedasticity. We notice similar Ljung-Box Q-Statistics for student’s t-
distribution and GED distribution. The Q-Statistics of 5, 10, and 20 lag lengths under three distributions are alike with slight 
deviations. The Q-Statistics values of standardized residuals and squared standardized residuals under three distributions are 
insignificant at conventional levels, so, we can accept the null hypothesis of no remaining serial correlations and no remaining 
GARCH effects. Thus the GARCH model under three different distribution densities appears to be adequate in describing the 

linear dependence in the return and volatility series. Given the coefficients (α1 and β1) of the GARCH model sum to nearly one 
(0.1009+0.8931 = 0.994), the conditional volatility is highly persistent.  

Finally, the log likelihood values of all the three distributions are -1161 -ignoring decimal values, and there is slight 
variance in AIC and BIC values. The AIC and BIC select the GARCH (1,1) model under Gaussian distribution over the other 
two distribution models. For the GARCH (1,1) model with Gaussian distribution, the AIC is 2331.45 and the BIC is 2346.84. 
For the Student’s t-distribution, the AIC is 2333.04 and the BIC is 2352.29. For the GED, the AIC is 2332.96 and the BIC is 
2351.53. Results indicate that GARCH (1,1) model under Gaussian distribution captures conditional volatility in Sensex 
monthly return better than that of GARCH (1,1) model under student’s t-distribution and GED.   
 

Table 3.  Parameter estimates of EGARCH (1,1) and APARCH (1,1) model specifications 

Parameter EGARCH   APGARCH 

  N t GED   N T GED 

α0 1.0594*** 1.0808*** 1.0825***   1.0146*** 1.0515*** 1.0511*** 

 (0.3191) (0.3195) (0.3182) (0.3243) (0.3246) (0.3230) 

α1 0.1859*** 0.1634*** 0.1731*** 0.0987*** 0.0879*** 0.0921*** 

 (0.0457) (0.0545) (0.0541) (0.0296) (0.0299) (0.0312) 

β1 0.9918*** 0.9921*** 0.9919*** 0.9069*** 0.9197*** 0.9151*** 

 (0.0128) (0.0127) (0.0136) (0.0254) (0.0277) (0.0281) 

λ 0.0416* 0.04 0.0394 0.1512 0.1942 0.1701 

 (0.0229) (0.025) (0.0257) (0.1284) (0.1781) (0.1633) 

v - 2.98 1.74 - 3.16 1.76 

  (1.5191) (0.2305)  (1.8405) (0.2407) 

Power    1.555** 1.35** 1.42** 

    (0.6987) (0.6869) (0.7375) 

Log(L) -1161.41 -1160.97 -1160.71 -1161.21 -1160.95 -1160.64 

Diagnostic 

Checking 

       

Standardized        
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Residuals 

Q (5) p value in 

parentheses 

1.45 (0.90) 1.47 (0.92) 1.48 (0.92)  1.26 (0.94) 1.34 

(0.93) 

1.32 (0.93) 

Q (10)  p value in 

parentheses 

5.10 (0.89) 4.96 (0.89) 5.02 (0.89)  5.06 (0.89) 4.93 

(0.89) 

4.99 (0.89) 

Q (20)  p value in 

parentheses 

12.50 (0.90) 12.28 

(0.91) 

12.38 

(0.90) 

 12.22 

(0.91) 

12.04 

(0.91) 

12.10 (0.91) 

Sqrd 
Standardized 
Residuals 

       

Q (5) p value in 

parentheses 

4.16 (0.53) 4.19 (0.52) 4.17 (0.52)  4.49 (0.48) 4.18 

(0.52) 

4.27 (0.51) 

Q (10)  p value in 

parentheses 

11.32 (0.33) 12.51 

(0.25) 

11.95 

(0.29) 

 11.05 

(0.35) 

11.99 

(0.29) 

11.56 (0.32) 

Q (20)  p value in 

parentheses 

23.22 (0.28) 24.19 

(0.23) 

23.73 

(0.25) 

 22.85 

(0.30) 

23.61 

(0.26) 

23.25 (0.28) 

Information 

Criteria 

       

AIC 2332.82 (df 

5) 

2333.94 

(df 6) 

2333.43 

(df 6) 

 2334.42 

(df 6) 

2335.90 

(df 7) 

2335.29 (df 

7) 

BIC 2352.07 (df 

5) 

2357.04 

(df 6) 

2356.52 

(df 6) 

 2357.51 

(df 6) 

2362.84 

(df 7) 

2362.23 (df 

7) 

OBS 347 347 347  347 347 347 

 
We then proceed to estimate the conditional variance of Sensex with the following asymmetric models, GJR-GARCH 

model, EGARCH model, and APARCH model under three different distributions using maximum likelihood method. The 
coefficients of estimated models, their log likelihood ratios, diagnostic tests result, and the information criterion values are 
present in Table 3. In all the three asymmetric models under different distributions the GARCH coefficients are positive and 
statistically significant at 1 percent significance level.  

The estimated parameters for GJR-GARCH model indicate that the coefficients of ARCH (α1 = 0.07) and GARCH 

(β1 = 0.89) in the conditional variance equation are statistically significant at 1 per cent level for all distribution densities . Next, 

the estimated coefficients of ARCH (α1 = 0.19) and GARCH (β1 = 0.99) for EGARCH and similarly, ARCH (α1 = 0.09) 

and GARCH (β1 = 0.90) for APARCH for all distribution densities are statistically significant at 1 percent level. We observe 

leverage effect only in GJR-GARCH model under Gaussian distribution. The leverage, λ coefficient in GJR-GARCH model is 
positive for all distributions, however, statistically not significant. The evidence shows that news impact is asymmetric in Sensex 

as λ ≠ 0 for EGARCH under Gaussian distribution, with statistically significant coefficient at 10 percent level. The EGARCH 
model captures asymmetric effect. In contrast, the other two asymmetric models under all three distribution densities have 

insignificant λ values. The λ coefficient in GJR-GARCH model and APARCH model is positive but statistically insignificant 
for all the three distributions. The diagnostics tests of asymmetric GARCH models seem to be satisfactory. Also, the results 
from the models show that Q-statistics for the standardized residuals and squared standardized residuals are insignificant with 
high p-values.  
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From results we observe that GJR-GARCH model, EGARCH model, and APARCH model have the largest log 
likelihood values (-1160) with GED distribution. Using the standardized residuals, for GJR-GARCH model with Gaussian 
distribution we obtain Q(5) = 1.17 (0.95), Q(10) = 5.15 (0.88), and Q(20) = 12.20 (0.91) where the p values are in 
parentheses. For EGARCH model with Gaussian distribution we obtain Q(5) = 1.45 (0.90), Q(10) = 5.10 (0.89), and Q(20) 
= 12.50 (0.90). Similarly for APARCH model with Gaussian distribution we obtain Q(5) = 1.26 (0.94) and Q(10) = 5.08 
(0.89), and Q(20) = 12.22 (0.91). From these results we conclude that there are no serial correlations in the residuals of the 
fitted models.  

We also examine the presence of remaining GARCH effects using the Ljung-Box Q-statistics of the squared 
standardized residuals series. For GJR-GARCH model with Gaussian distribution show Q(5) = 4.88 (0.43), Q(10) = 10.74 
(0.38), and Q(20) = 22.60 (0.31) where the p values are in parentheses. For EGARCH model with Gaussian distribution we 
obtain Q(5) = 4.16 (0.53), Q(10) = 11.32 (0.33), and Q(20) = 23.22 (0.28). Similarly for APARCH model with Gaussian 
distribution we obtain Q(5) = 4.49 (0.48) and Q(10) = 11.05 (0.35), and Q(20) = 22.85 (0.30). These results indicate that 
the standardized residuals have no conditional heteroscedasticity. The fitted model seems adequate at one percent significance 
level. 

We notice variations in AIC and BIC values. The AIC and BIC select the GJR-GARCH (1,1) model, EGARCH (1,1) 
model, and APARCH (1,1) model under Gaussian distribution over the other two distribution models. For the GJR-GARCH 
(1,1) model with Gaussian distribution, the AIC is 2332.33 and the BIC is 2351.58. For the EGARCH (1,1) model with 
Gaussian distribution, the AIC is 2332.82 and the BIC is 2352.07. For the APARCH (1,1) model, the AIC is 2334.42 and the 
BIC is 2357.51. Results indicate that asymmetric GARCH models under Gaussian distribution captures conditional volatility in 
Sensex monthly return better than under student’s t-distribution and GED.   

When we compare efficiency of symmetric and asymmetric models using information criteria, we notice that 
conventional GARCH (1,1) model has better AIC and BIC values. In asymmetric GARCH models GJR-GARCH model has 
better information criteria values. However, it’s the EGARCH model with Gaussian distribution that capture the leverage effect 
in the Sensex monthly returns series.  Moreover, a comparison of 12 models under different distribution densities indicate that 
both symmetric and asymmetric GARCH models under Gaussian distribution clearly outperforms the GARCH models under 
student’s t-distribution and GED distribution.  
 
5. Conclusion 
The aim of this paper is to characterize volatility models by their ability to capture commonly held stylized facts about 
conditional volatility. We consider 29 years of post-liberalization period in India. The time period spans from January 1991 to 
December 2019. We obtain monthly close values of Sensex and calculate returns series. We estimate GARCH (1,1), GJR-
GARCH (1,1), EGARCH (1,1), and APARCH (1,1) models under three most commonly used distribution densities, the 
Gaussian, Student’s t-distribution and GED distribution for a total of 12 models. The Sensex monthly returns series exhibit 
positive Skewness, weaker excess kurtosis and no serial correlations. These results are similar to the results report by(Pagan, 
1996; Cont, 2001) who report that low frequency returns series such as monthly returns tend to have normal distribution 
properties. The squared log returns series has significant autocorrelation and squared returns decay slowly indicating presence of 
volatility clustering. This result is similar to results report by (Ding et al., 1993; Ding & Granger, 1996; McMillan & Ruiz, 
2009) who report slow decay of the autocorrelations of squared and absolute returns over time. We conclude that GARCH 
(1,1) model under Gaussian distribution captures conditional volatility adequately in Sensex monthly return better than that of 
GARCH (1,1) model under student’s t-distribution and GED. Similarly, the GJR-GARCH (1,1) model, EGARCH (1,1) 
model, and APARCH (1,1) model under Gaussian distribution captures conditional volatility adequately over the other two 
distribution models. Furthermore, conventional GARCH (1,1) model has better AIC and BIC values over GJR-GARCH (1,1) 
model, EGARCH (1,1) model, and APARCH (1,1). Among asymmetric GARCH models GJR-GARCH model has better 
information criteria values.  Finally, GJR-GARCH (1,1) model under Gaussian distribution exhibit significant leverage effect. In 

contrast, the other two asymmetric models under all three different distribution densities have in significant λ values. 
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