Economic Analysis of Vulnerability and Capacity: A Study of Water Logging, Bhobodah, Keshabpur, Jessore

Md. Mizanuzzaman¹

¹Institute of Disaster Management and Vulnerability Studies, University of Dhaka, Dhaka, Bangladesh Correspondence: C/O. Nazrul Store, 122, West Kafrul, Taltala Bazar, Dhaka-1207,Bangladesh.

Received: September 13, 2017 Accepted: September 15, 2017 Online Published: September 20, 2017

Abstract

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented. (Turner. et.al). This study is related with economic analysis of vulnerability and capacity contextually Jessore's village.

Keywords: Economic Analysis, Vulnerability, Capacity, Water Logging, Jessore.

1. Introduction

Due to perpetual siltation in the rivers and as a consequence of unplanned development interventions on the river system, long-lasting water-logging in the human settlements is taking place in Keshabpur resulting in considerable loss and damage to dwelling houses, standing crops, shrimp farms, roads, educational institutions. The floods and prolonged water-logging have caused significant displacement presenting humanitarian challenges in safe water supply, sanitation, and shelter and food security.

Water logging at Bhobodah like BilDakatia as a matter of concern since about 25 to 30 years has become a national problem. The expansion and intensity of that water logging has exceeded of all previous records this year. Concerning on this matter if there would be taken any effective and permanent initiatives by the government it will be very difficult to live in the affected locality. A famine like condition is existing among the people. In addition with this starvation and unemployment problems create an unbearable condition. Cultivation of BORO, IRRI and other crops has been hindered. Considering this condition, people of that locality raise their voice for declaration as a disaster prone area and to provide relief, taking proper steps for rehabilitation to the concerned authority.

1.1 Water Logging Areas and Losses

Catchments of the Hari-Mukteswary and Aparbhaddra- Harihar rivers are generally considered as Bhabodah area. In terms of administrative consideration water logging of Keshabpur, Monirampur, Abhoynagar, sadarupazillas of

Jessore district and Dumuriaupazilla of Khulna district are of seized areas.

Table-1: Affected Sector: Water Logging Areas and Losses

No. Affected Upazilla	of	No. Affected Union	of	Affected Land area	Affected People	Migrant Family	Affected Sector
05		41		77346 hectares	708035	1003	 Households Health & sanitation Crops fields Fishing projects Roads & constructions Educational & religious institutions
							 Socio-economic conditions

1.2 Reasons of Water Logging

In the decade of 60's, by the prevalent government established polder system which is known as wapda to protect salinity and sudden up surge from the rivers for producing huge food in the coastal areas .the locality , livelihood households , bils and cannels are surrounded by the embankment in this process . and many sluice gates were built to turn out saline water of the bils and cannels . Agricultural revaluation such as bumper production of agriculture , one time harvesting has found for instance . But the impact of this process water logging is followed within 10 to 15 years of its establishment because of silt deposition .

Before establishment of polder system, tide driven silt disseminated on the land area of bil and silt free water discharged by low laying wet lands of bil became up rise by siltation on the other hand navigation problem did not found in the rivers. But establishing polder silt oriented water did not disseminate on the field as a result silt depositions became started in the river. Successively silt deposition made the river comparatively high from the inter related cannel or bil and oppressed to discharge rainfall water and found water logging. Silt deposition ratio is high in the terminal point of the river. About 5 to 7 km of river is going into rise 1 miter becoming lost its navigation and unnatural death by siltation. Mean while the rivers of Hamkur, LoarVadra, Aprar Salta, Burivadra have become go into unnatural death and the condition of other rivers is crucial. As a result about 12-15 thousand acears of land submerged by water logging.

2. Research Methodology

The methodology for our study involved the implementation of vulnerability and capacity analyse through while information from previous studies conducted in these villages was used to profile the characteristics of the area. Community groups as well as *people of different sectors* participated in thisprocess. The problems and issues faced by each villager as a whole as well as those faced by villagers individually were discussed. Scoring and ranking methods were used to identifying the most severe problems.

Participants were asked to priorities the problems that affected their village as a whole rather than those faced at

an individual or family level. The strategy we adopted assumes working with households, communities and other local entities is an effective mechanism for identifying those factors that preventor enables responses to events that could cause disaster. Without such consultations the problems faced by a small group of people or households within a community will be overlooked. In-depth discussions on the problems identified followed and social maps were used to analyse the causes and effects of each problem. This process is outlined in Figure 1& 2.

Step-1: Identifying potential Threats:

- a). Problem Identification
- b). Objective Elaboration
- c). Questionnaire and FGD
- d). Secondary data accumulation

Step-2: Identifying Vulnerabilities:

- a). Focus Group Discussion FGD
- b). Key Informant Interview
- c). Vulnerability Assessment

Step-3: Assessing people's capacities to prevent or cope with Threats:

- a). Exposure, Sensitivity, Adaptation capacity
- b). Key suggestion generation in line to adaptation & mitigation
- c). Sharing and feedback collection
- d). Secondary data accumulation
- e). Data Entry and Analysis
- f). Key suggestion generation in line to adaptation & mitigation
- g). Draft reporting
- h). Final reporting

Vulnerability

- A set of conditions and processes resulting from physical, social, economic and environmental factors that increase the susceptibility of a community to the impact of hazards.
- Three dimensions: economic, social and ecological.

Regional vulnerability = damage potential + coping capacity

Vulnerability: Economic dimension

- Economic damage potential, which can be understood as anything concrete that affects the economy of a region and can be damaged by a hazard.
- Represents the risk to production, distribution and consumption.

All of the steps are accomplished by 2 FGDs, Interviews and Informant Questioners.

Source:

Female:

FGD-1: 15 persons
FGD-2: 15 persons
Informal Interview: 10 persons
Informant Questioners: 10 persons
Total Participants: 50 persons
Male: 30

Study Location: Bharat Bhaina, Dohury, Kopalia

20

Upazilla: Keshabpur District: Jessor

3. Data Analysis

Table: 2: People's perceptions on sensitivity of major sector/ activity associated with induced water stress and vulnerability by 2 FGDs, Interviews and Informant Questioners

Affected	Response in Percentage (%) Over Study Area						
Sector/Activity Due To Water Stress	FGD-1 (15 persons)	FGD-2 (15 persons)	Interview (10 persons)	Questioners (10 persons)	Total Average %		
Impact on drinking water supply	90	85	87	90	88.00		
Impact on Domestic water use	85	91	83	85	86.00		
Standard of living	75	85	80	85	81.25		
Cultivation	100	95	87	93	93.75		
Navigation	42	30	15	25	28		
Shrimp culture	85	95	90	85	88.75		
Fishing	75	85	80	85	81.25		
Women's home stead vegetable gardening	80	83	78	75	79.00		
Rearing of livestock and poultry	82	87	85	84	84.50		
Impact on water quality	76	73	68	72	72.25		
Impact on water dependent ecosystem	65	64	71	68	67.00		
Impact on water related diseases	87	78	86	82	83.25		
Impact on communication	78	76	86	81	80.25		
Impact on hygienic condition	67	58	76	67	67.00		
Impact on health & sanitation	67	72	82	75	74.00		
Impact on education	75	78	76	77	76.50		

Impact on social strength	67	63	60	65	63.75
Impact on social economy	78	76	83	78	78.75
Impact on households (clay made/hut)	87	90	85	88	87.50
Impact on educational institutions	56	65	70	60	62.75
Migration trend	45	52	47	45	47.25
Salinity intrusion	95	87	93	90	91.25

3.1 Impact of Water Logging Induced Disaster on Livelihood Capital

The study didn't use complex scientific data to access water logging variability and change. The study was more focused on to gain people's valuable perception and tried to link that withexisting literature and scientific statements. Table 1 shows the people's perception on impact on water logging.

It was quite interesting to see that the most noticeablechange is the salinity intrusion (91.25%) and response was higher in comparing other two study areas. About 94% respondents identified that there was increased intensity of water logging and most of the cultivable lands are inundated which causing problems to cultivation. Almost 93.4% respondents identified that water logging creates sever impact on natural resources and hamper income generating for along duration. Even, women's other gender differentiated roles like water and fuel woodcollection have become limited due to the onset of inundation events. They identified salinity intrusion as the second most hazardous incident. They further pointed out that salinity intrusion is not disaster event but it is an on setting gradual event due to long time water logging.

Table: 3. Possible adaptive measures to reduce climate change impacts on water resources

Adaptive measure		Response in pe	ercentage (%) ove	r study area	
related to water logging	FGD-1 (15 persons)	FGD-2 (15 persons)	Interview (10 persons)	Questioners (10 persons)	Total Average %
Tidal River Management (TRM) establishment	100	95	98	100	98.25
Utilization in domestic activity	89	96	98	88	92.75
Digging of protected pond to preserve safety water	100	97	97	98	98.00
Change in traditional irrigation practice	100	97	97	98	98.00
Reduce shrimp cultivation	87	78	77	79	80.25
Reduce embankment	100	98	90	96	96.00
Improving drainage system installation to prevent water logging	78	87	78	76	79.75
Plantation of saline tolerant tree/paddy species	98	96	94	95	95.75
Plantation of water logging tolerant tree/paddy species	96	96	98	92	95.50

Reduce dependency	relief	86	80	65	78	77.25
Divert in occupation	other	78	74	62	63	69.25
Rebuilt househol	ds	78	86	86	87	84.25

Table 3 shows possible adaptive measures to water logging impacts on waterresources. Adaptive measures along with people's coping strategy could work in parallel toenhance their resilience and adaptive capacity to the water resources with time andopportunity that might benefit the resource and resource dependent community as a whole. They added that river erosion further builds up sand deposition in the river bed and floodplain. Gradual salinity intrusion during summer season and abrupt salinity infestation due to storm surge and tidal surge associated water logging is also critical phenomenon in the area. Besides these, increasing trend in temperature together with erratic rainfall is substantially damaging waterresource in the study area. To fully understand the impacts of climate change on waterresource, the socio-economic dimension needs to be analyzed parallel with environmental and physical scenario.

4. Findings of the Study

Table-4: shows vulnerable condition and coping capacity of the people of that area.

Capacities	Vulnerabilities	
by by which about 99% people will be benefitted - About 90% of cultivable land if possible to use by using TRM es do - Govt. has taken initiatives to improve or repair roads an constructions - Govt. authority provide Salin and flood tolerant trees and padd seeds - knowledge of buildin households increased - Diverting trend to other	- About 87.50% of households mainly clay made affected by logging water - Around 77346 hectors of agricultural land is waterlogged - About 76% educational entres do not function for using as shelter home and causes of inundation - About 90% people do not get pure drinking water - Hygiene and sanitation condition are severely affected - About 84% of people affected by different diseases - About 88.75% of shrimp cultivation projects damaged	Physical/material
responsibilities in group work - Youth group strengthening	- 47% of households have members who migrate out, migration of youths is increasing - Social strength has been broken	Social/organizational What are the relation and organization among people?
rough - Demand for new agricultur techniques re but - Participation in communit meetings on - Willingness to obtain new	-Water logging makes our lives difficult but we cannot get enough external support - We have got several assurance but have not executed yet - We have to depend on government authority for relief.	Motivational/attitudinal How does the community views its ability to create change?
•	government authority for relief.	

4.1 Loss or Damage Assessment

By applying the following measure we would able to understand the damage and loss per year for the required

$$AD = TD_{Ag} + TD_{Infra} + TD_{Ind} + TD_{Edu} + TD_{H}$$

Where

= Total Damage for Agriculture Sector

TD_{Infra} = Total Damage for Infrastructure Sector

 TD_{Ind} = Total Damage for Industry Sector TD_{Edu} = Total Damage for Education Sector TD_{H} = Total Damage for Health Sector

$$TD_{Ag} = TD_C + TD_F + TD_L$$

Where

= Total Damage for Crop Sector

 TD_F = Total Damage for Fisheries Sector

= Total Damage for Livestock Sector TD_{L}

Crop sub-sector

$$TDc = \sum_{i} (Q_i * P_i) + \sum_{i'} D_{i'}$$

$$i = 1, \dots, n$$
 $i' = 1, \dots, n'$

Where.

 Q_i -Quantity of crop damage for i-th crop in metric ton

 P_i -Wholesale price of the i-th damaged crop per metric ton in Taka

Di' -Lump sum damage estimate for i'th crop in Taka (crops for which data is available in groups and loss of seedbeds)

Fisheries sub-sector

$$TD_F = \sum D_j$$

$$j=1,\cdots,m$$

Where,

Lump sum damage for fisheries in j-th region (which includes loss of fishes, D_i fingerlings and infrastructure)

Irrigation Canal

$$TD_{IC} = LxC$$

Length of irrigation canal damaged, km Cost of repair of canal in Taka, per km

C Embankment

$$TD_{EM} = LxC$$

Length of embankment damaged, km Cost of repair of damaged embankment in Taka, per km

 $TD_{RS} = \sum_{i} \sum_{j} H_{ij} * C_{j} + \sum_{i} \sum_{j} H_{ij} * I_{i}$

where, $i = 1, \dots, n$; $j = 1, \dots, m$

Number of Houses of i-th type in j-th region Cost of Repair of per Houses of i-th Type Cost of inventory loss of per house of i-th Type

Estimating TD Edu

The damage to Education sector TD_{Edu} has been estimated by

$$TD_{Edu} = \sum_{i} N_i * C_i$$

where, $i = 1, \dots, n$;

Number of damaged educational institute of ith category

C_i Cost of repair in Taka of damaged educational institute of ith category

Estimating TD_{HS}

 N_i

The damage to Health sector TD_{HS} has been estimated by

$$TD_{HS} = C\sum_{j} H_{i} + \sum_{i} \sum_{j} P_{ij} * T_{j}$$

H_i Number of Damages of Health Centres in j-th region

C Cost of repair per centre

P_{ij} Number of population affected by i-th disease in j-th region

T_i Cost of Treatment per Person of i-th disease

4.2 Loss Assessment per year (Sector Wise)

According to the above mentioned data (Table: 5) in addition with the providing formula the following loss will be observed per year.

Table-5: Loss Assessment per year (Sector Wise)

Affected Sectors	Total Number	Total Cost Tk. (App.)	Estimated Damage (%)	Estimated Number	Estimated Cost (Tk.)	Lum sum damage Cost	Total loss Tk.
Households (Clay made)	12,000	30,000 tk. * 12,000 =36,00,00,000	87.50	10,500	10,500* 30,000= 31,50,00,000	1,00,00,000 Tk.	32,50,00,000
Crop (Paddy) Arable land Estimated only for (Aman Paddy)	85,000 ha	85,000* 14,000 = 119,00,00,000	93	77346 ha	108,28,44,000 Tk. Amount of Production = 10,200 mt Total price= 10,200*25,000 = 25,50,00,000 Tk.	50,00,000 Tk.	26.00,00,000
Educational Center	350	350*20,00,000 = 70,00,00,000Tk.	76	266	266 * 20,00,000 = 53,20,00,000 Tk.	80,00,00,000 Tk.	54,00,00,000 Tk.
Shrimp Cultivation	15,000 accr.	15,000 * 1,00,000 = 150,00,00,000	88.75	1,330	1330* 100000 = 13,30,00,000 Tk. Total loss per year	70,00,000Tk.	14,00,000Tk.

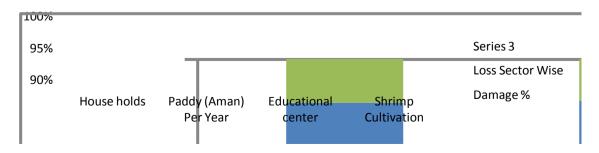


Figure-1: Loss Sector Wise Damage

Conclusion

Before establishment of polder system, tide driven silt disseminated on the land area of bil and silt free water discharged by low laying wet lands of bil became up rise by siltation on the other hand navigation problem did not found in the rivers. But establishing polder silt oriented water did not disseminate on the field as a result silt depositions became started in the river. Successively silt deposition made the river comparatively high from the inter related cannel or bil and oppressed to discharge rainfall water and found water logging. Silt deposition ratio is high in the terminal point of the river. About 5 to 7 km of river is going into rise 1 miter becoming lost its navigation and unnatural death by siltation. Mean while the rivers of Hamkur, LoarVadra, Aprar Salta, Burivadra have become go into unnatural death and the condition of other rivers is crucial. As a result about 12-15 thousand acears of land submerged by water logging and losses about 227,26,00,000 Tk per year.

References

Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., ... & Polsky, C. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the national academy of sciences, 100(14), 8074-8079

Water Logging in Satkhira District

An Analysis of Gaps between Needs and Response November 2011, Early Recovery Facility, UNDP Bangladesh

Impact of Climate Induced Disaster on Gender By: Dr. Sujit Kumar Bala, Dr. G M Tarekul Islam Sustainable Livelihoods and Vulnerability to Disaster By: John Twigg

Options for Self-reliant Resurgence

CPD's Rapid Assessment of Flood 2004

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.